首页> 外文期刊>Water resources research >Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland
【24h】

Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland

机译:半干旱灌木丛中两层土壤水分对表面能动力学和行星边界层特征的影响的观察

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

[1] We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBL_h) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBL_h was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.
机译:[1]我们提供了一项观测分析,研究了土壤水分控制对表面能动力学和行星边界层特征的影响。随着气候变化继续改变水的可利用性,了解对土地-大气相互作用的土壤水分控制将变得越来越重要。在这项研究中,我们分析了Santa Rita Creosote Ameriflux网站的4年数据。我们通过两种方式对数据进行独立分类:(1)湿季或干季,以及(2)基于浅层水分的存在与否(0- 20厘米)和深(20-60厘米)的土壤层。使用这些分类,我们使用平均响应和线性回归对土壤水分对表面能动力学和行星边界层特征的控制进行了量化。我们的结果突出了深层土壤水分在土地-大气相互作用中的重要性。深层土壤水分的存在使反照率降低了约10%,即使在没有浅层水分的情况下,蒸发分数也存在显着差异。当整个土壤剖面干燥时,行星边界层高度(PBL_h)最大,当整个土壤剖面湿润时,行星边界层高度降低约1 km。即使没有浅层水分但存在深层水分,PBL_h仍显着低于整个干燥状态。深层水分的重要性可能因地而异,并通过植被调节。因此,了解这些关系也为了解植被与水文循环之间的反馈及其对气候系统的影响提供了重要的见解。

著录项

  • 来源
    《Water resources research》 |2014年第1期|306-317|共12页
  • 作者单位

    School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA;

    School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85719, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号