首页> 外文期刊>Water resources research >Hydrogeophysical characterization of transport processes in fractured rock by combining push-pull and single-hole ground penetrating radar experiments
【24h】

Hydrogeophysical characterization of transport processes in fractured rock by combining push-pull and single-hole ground penetrating radar experiments

机译:推拉与单孔探地雷达相结合的裂隙岩输运过程水文地球物理特征

获取原文
获取原文并翻译 | 示例
           

摘要

The in situ characterization of transport processes in fractured media is particularly challenging due to the considerable spatial uncertainty on tracer pathways and dominant controlling processes, such as dispersion, channeling, trapping, matrix diffusion, ambient and density driven flows. We attempted to reduce this uncertainty by coupling push-pull tracer experiments with single-hole ground penetrating radar (GPR) time-lapse imaging. The experiments involved different injection fractures, chaser volumes and resting times, and were performed at the fractured rock research site of Ploemeur in France (H+ network, hplus.ore.fr/en). For the GPR acquisitions, we used both fixed and moving antenna setups in a borehole that was isolated with a flexible liner. During the fixed-antenna experiment, time-varying GPR reflections allowed us to track the spatial and temporal dynamics of the tracer during the push-pull experiment. During the moving antenna experiments, we clearly imaged the dominant fractures in which tracer transport took place, fractures in which the tracer was trapped for longer time periods, and the spatial extent of the tracer distribution (up to 8 m) at different times. This demonstrated the existence of strongly channelized flow in the first few meters and radial flow at greater distances. By varying the resting time of a given experiment, we identified regions affected by density-driven and ambient flow. These experiments open up new perspectives for coupled hydrogeophysical inversion aimed at understanding transport phenomena in fractured rock formations.
机译:由于示踪剂通道和主要控制过程(例如分散,通道,捕集,基质扩散,环境和密度驱动的流动)存在很大的空间不确定性,因此在裂隙介质中传输过程的原位表征特别具有挑战性。我们试图通过将推挽式示踪剂实验与单孔探地雷达(GPR)延时成像相结合来减少这种不确定性。实验涉及不同的注入裂缝,追赶者数量和静止时间,并在法国Ploemeur的裂隙岩石研究现场进行(H +网络,hplus.ore.fr / en)。对于GPR采集,我们在固定有柔性衬管的井眼中使用了固定和移动天线设置。在固定天线实验期间,时变GPR反射使我们能够在推挽实验期间跟踪示踪剂的时空动态。在移动天线实验中,我们清晰地成像了发生示踪剂传输的主要裂缝,被示踪剂捕获了较长时间的裂缝以及示踪剂在不同时间分布的空间范围(长达8 m)。这证明了在最初的几米中存在强通道化流,并且在更大距离处存在径向流。通过改变给定实验的静止时间,我们确定了受密度驱动和环境流量影响的区域。这些实验为耦合水文地球物理反演开辟了新的视角,旨在理解裂缝岩层中的运移现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号