...
首页> 外文期刊>Water resources research >Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site
【24h】

Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

机译:拟建的页岩气水力压裂现场地下流体注入引起的浅层含水层脆弱性

获取原文
获取原文并翻译 | 示例
           

摘要

Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at approximate to 2,000 m depth and the shallow aquifer being the Sherwood Sandstone at approximate to 300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.
机译:拟议的水力压裂(压裂)作业所产生的地下水流使用91种情景进行了数值模拟。选择的方案是水文地质因素的组合,可以先验地控制压裂流体向浅地下的长期迁移。这些因素包括诱发裂缝程度,跨盆地地下水流量,深低水力传导层,深高水力传导层,断层水力传导率和超压。该研究考虑了英格兰西北部的鲍兰德盆地,鲍兰德页岩的压裂深度约为2,000 m,浅层含水层为舍伍德砂岩,深度约为300-500 m。在91个方案中,有73个方案导致被跟踪的粒子在10,000年内未到达浅层含水层,而18个方案导致了旅行时间少于10,000年。事实证明,有四个因素对减少到达含水层的行程时间具有统计学上的显着影响:增加的诱导裂缝程度,不存在深的高导水率层,相对较低的断层导水率以及超压幅度。模型表明,高水力传导率地层比低水力传导率地层更有效地阻碍了垂直流动。此外,低水力传导率断层可能导致地下压力分区,降低水平地下水流,并促进垂直流体运移。在最坏的情况下,使用不太可能的地质条件和诱发的裂缝长度,地层水力传导率的最大值以及具有保守的示踪剂行为的模拟最坏情况下,到浅层含水层底部的粒子传播时间为130年。这项研究已经确定了导致页岩开采导致含水层脆弱性的水文地质因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号