...
首页> 外文期刊>Water Research >Hematite facet-mediated microbial dissimilatory iron reduction and production of reactive oxygen species during aerobic oxidation
【24h】

Hematite facet-mediated microbial dissimilatory iron reduction and production of reactive oxygen species during aerobic oxidation

机译:赤铁矿面部介导的微生物氧化铁还原和生产在有氧氧化过程中的活性氧物质

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Microbial dissimilatory iron reduction and aerobic oxidation affect the biogeochemical cycles of many elements. Although the processes have been widely studied, the underlying mechanisms, and especially how the surface structures of iron oxides affect these redox processes, are poorly understood. Therefore, {001} facet-dominated hematite nanoplates (HNP) and {100} facet-dominated hematite nanorods (HNR) were used to explore the effects of surface structure on the microbial dissimilatory iron reduction and aerobic oxidation processes. During the reduction stage, the production of total Fe(II) normalized by specific surface area (SSA) was higher for HNP than HNR due to steric effects and the ligand-bound conformation of the connection between iron on different exposed facets and electron donors from microorganisms. However, during the aerobic oxidation stage, both the SSA- and Fe(II)-normalized reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and hydroxyl radical (center dot OH), were higher for HNR than HNP. Theoretical calculation results showed that the {100} facets exhibited a lower activation energy barrier for oxygen reduction reaction than {001} facets, supporting the experimental observation that {100} face-tdominated HNR had a higher ROS production efficiency than {001} facet-dominated HNP. These results indicated that surface characteristics not only mediated the microbial reduction of Fe(III) but also affected the aerobic oxidation of microbially reduced Fe(II). Accessibility of electron donors to surface iron atom determined the reduction of Fe(III), and activation energy barrier for oxygen reduction by surface Fe(II) dominated the ROS production during the redox processes. This study advances our understanding of the mechanisms through which ROS are produced by iron (oxyhydr)oxides during microbial dissimilatory iron reduction and aerobic oxidation processes. (C) 2021 Elsevier Ltd. All rights reserved.
机译:微生物辐射铁还原和有氧氧化会影响许多元素的生物地球化学循环。虽然该过程已被广泛研究,潜在的机制,尤其是如何如何如何影响这些氧化还原过程的氧化氧化铁的表面结构。因此,使用{001}面导核纳米层(HNP)和{100级突出型赤铁矿纳米杆(HNR)来探讨表面结构对微生物含铁氧化铁还原和有氧氧化过程的影响。在还原阶段期间,由于空间效应,由特定表面积(SSA)标准化的总Fe(II)的产生高于HNR,并且由于空间效应以及不同暴露的小平面和电子供体之间的铁之间的连接的配体结合构象微生物。然而,在有氧氧化阶段,SSA-和Fe(II) - 一体化反应性氧(ROS),包括过氧化氢(H 2 O 2)和羟基(中心点OH),对于HNP高于HNP。理论计算结果表明,{100}刻面比{001}小平面表现出用于氧还原反应的较低激活能量屏障,支持{100}面部躯干HNR的实验观察比{001}面部更高的ROS生产效率 - 主导的HNP。这些结果表明,表面特征不仅介导Fe(III)的微生物还原,而且影响了微生物还原Fe(II)的有氧氧化。电子供体对表面铁原子的可达性确定了Fe(III)的还原,并通过表面Fe(II)的氧还原的激活能量屏障在氧化还原过程中占据了ROS生产。本研究进展了我们对通过铁(Oxyhydr)氧化物在微生物分化铁还原和有氧氧化过程中通过铁(氧水)氧化物产生的机制的理解。 (c)2021 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Water Research》 |2021年第1期|116988.1-116988.9|共9页
  • 作者单位

    Chinese Acad Sci Res Ctr Ecoenvironm Sci State Key Lab Environm Chem & Ecotoxicol Beijing 100085 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Res Ctr Ecoenvironm Sci State Key Lab Environm Chem & Ecotoxicol Beijing 100085 Peoples R China;

    Chinese Acad Sci Res Ctr Ecoenvironm Sci State Key Lab Environm Chem & Ecotoxicol Beijing 100085 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Res Ctr Ecoenvironm Sci State Key Lab Environm Chem & Ecotoxicol Beijing 100085 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Reactive oxygen species; Redox; Surface structure; Iron oxides; Shewanella oneidensis MR-1;

    机译:反应性氧物种;氧化还原;表面结构;氧化铁;雪松oneidensis mr-1;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号