...
首页> 外文期刊>Water Research >Enhanced methane production in an up-flow microbial electrolysis assisted reactors: Hydrodynamics characteristics and electron balance under different spatial distributions of bioelectrodes
【24h】

Enhanced methane production in an up-flow microbial electrolysis assisted reactors: Hydrodynamics characteristics and electron balance under different spatial distributions of bioelectrodes

机译:增强甲烷生产在上流微生物电解辅助反应堆中:在生物电极不同空间分布下的流体动力学特性和电子平衡

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Compared with common anaerobic digestion, microbial electrolysis has been proven feasibly to accelerate biodegradation and methanogenesis with the advantages of effective electron flow regulation. However, its actual application and scale-up required a full understanding and further investigation on electrode size and distribution. For making full use of the space of the integrated reactor and improve methane recovery, an effective interior configuration was significant. In this work, three types of reactors with different cathode spatial distributions, that is, different cathode space ratios (ratio of cathode surface area to reaction region volume), were studied to form a good flow pattern for obtaining high methane production. Tracer experiments and numerical simulation were employed simultaneously for understanding the hydrodynamics characters of the interior flow field. The results showed that by increasing the cathode space ratio to 1.33 cm(2)/cm(3) and 2 cm(2)/cm(3), respectively, better flow patterns with the residence time of 1.336 times and 1.363 times of theoretical hydraulic retention time could be obtained. The stacked structure of nickel meshes was beneficial to prolong the contact time of contaminant and improve the mass transfer. Increasing the cathode space ratio could also enhance the electrochemical performance. Considering the organic removal, methane recovery, electrons generation, and material consumption, the recommended cathode space ratio was 1.33 cm(2)/cm(3). With this structure, COD removal efficiency reached 93.2 +/- 1.9% and 94.1 +/- 1.5%, methane production rate reached 332.0 and 334.8 mL CH4/L reactor/day, and methane yield was 171.3 and 246.4 mL CH4/g COD under the HRT of 24 h and 36 h, respectively. (C) 2021 Elsevier Ltd. All rights reserved.
机译:与常见的厌氧消化相比,已经证明了微生物电解,以加速生物降解和甲状腺发生与有效电子流量调节的优点。然而,其实际应用和扩展需要完全理解和进一步调查电极尺寸和分布。为了充分利用集成反应器的空间并改善甲烷回收,有效的内部构造是显着的。在这项工作中,研究了具有不同阴极空间分布的三种类型的反应器,即,不同的阴极空间比(与阴极表面积与反应区域体积的比率相比)进行研究,以形成良好的流动模式,用于获得高甲烷的产生。同时采用示踪实验和数值模拟,以了解内部流场的流体动力学特征。结果表明,通过将阴极空间比增加至1.33cm(2)/ cm(3)和2cm(2)/ cm(3),其停留时间为1.336倍和1.363次理论的流动模式可以获得液压保留时间。镍网的堆叠结构有益于延长污染物的接触时间并改善传质。增加阴极空间比也可以提高电化学性能。考虑有机去除,甲烷回收,电子产生和材料消耗,建议的阴极空间比为1.33厘米(2)/ cm(3)。通过这种结构,COD去除效率达到93.2 +/- 1.9%和94.1 +/- 1.5%,甲烷生产率达到332.0和334.8ml反应器/天,甲烷产率为171.3和246.4ml CON COD分别为24小时和36小时。 (c)2021 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Water Research》 |2021年第1期|116813.1-116813.10|共10页
  • 作者单位

    Harbin Inst Technol State Key Lab Urban Water Resource & Environm Harbin 150001 Peoples R China;

    Harbin Inst Technol State Key Lab Urban Water Resource & Environm Harbin 150001 Peoples R China|Harbin Inst Technol Shenzhen Sch Civil & Environm Engn Shenzhen 518055 Peoples R China;

    Jiangnan Univ Sch Environm & Civil Engn Jiangsu Key Lab Anaerob Biotechnol Wuxi 214122 Jiangsu Peoples R China;

    Harbin Inst Technol State Key Lab Urban Water Resource & Environm Harbin 150001 Peoples R China;

    Harbin Inst Technol State Key Lab Urban Water Resource & Environm Harbin 150001 Peoples R China;

    Harbin Inst Technol State Key Lab Urban Water Resource & Environm Harbin 150001 Peoples R China|Harbin Inst Technol Shenzhen Sch Civil & Environm Engn Shenzhen 518055 Peoples R China;

    Chinese Acad Sci Natl Technol Innovat Ctr Synthet Biol Tianjin Inst Ind Biotechnol Tianjin 300308 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microbial electrolysis; Methane recovery; Cathode spatial distribution; Hydrodynamics analysis; Numerical simulation;

    机译:微生物电解;甲烷回收;阴极空间分布;流体动力学分析;数值模拟;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号