首页> 外文期刊>Water Research >Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies
【24h】

Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies

机译:使用发酵和微生物燃料电池技术从食品加工废水中制氢和发电

获取原文
获取原文并翻译 | 示例
       

摘要

Hydrogen can be produced from fermentation of sugars in wastewaters, but much of the organic matter remains in solution. We demonstrate here that hydrogen production from a food processing wastewater high in sugar can be linked to electricity generation using a microbial fuel cell (MFC) to achieve more effective wastewater treatment. Grab samples were taken from: plant effluent at two different times during the day (Effluents 1 and 2; 735 ± 15 and 3250 ± 90 mg-COD/L), an equalization tank (Lagoon; 1670 ± 50 mg-COD/L), and waste stream containing a high concentration of organic matter (Cereal; 8920 ± 150 mg-COD/L). Hydrogen production from the Lagoon and effluent samples was low, with 64 ± 16 mL of hydrogen per liter of wastewater (mL/L) for Effluent 1, 21 ± 18 mL/L for Effluent 2, and 16 ± 2 mL/L for the Lagoon sample. There was substantially greater hydrogen production using the Cereal wastewater (210 ± 56 mL/ L). Assuming a theoretical maximum yield of 4 mol of hydrogen per mol of glucose, hydrogen yields were0.61-0.79 mol/mol for the Cereal wastewater, and ranged from 1 to 2.52mol/mol for the other samples. This suggests a strategy for hydrogen recovery from wastewater based on targeting high-COD and high-sugar wastewaters, recognizing that sugar content alone is an insufficient predictor of hydrogen yields. Preliminary tests with the Cereal wastewater (diluted to 595 mg-COD/L) in a two-chambered MFC demonstrated a maximum of 81 ± 7 mW/m~2 (normalized to the anode surface area), or 25 ± 2 mA per liter of wastewater, and a final COD of < 30 mg/L (95% removal). Using a one-chambered MFC and pre-fermented wastewater, the maximum power density was 371 ± 10mW/m~2 (53.5 ± 1.4 mA per liter of wastewater). These results suggest that it is feasible to link biological hydrogen production and electricity producing using MFCs in order to achieve both wastewater treatment and bioenergy production.
机译:废水中糖类的发酵可以产生氢,但是许多有机物保留在溶液中。我们在这里证明,可以使用微生物燃料电池(MFC)将含糖量高的食品加工废水中的氢气产生与发电联系起来,以实现更有效的废水处理。抓取样品取自:一天中两个不同时间的废水(废水1和2; 735±15和3250±90 mg-COD / L),均衡罐(Lagoon; 1670±50 mg-COD / L) ,以及含有高浓度有机物(谷物; 8920±150 mg-COD / L)的废物流。泻湖和废水样品中的氢气产量较低,废水1的每升废水(mL / L)为64±16 mL氢气,废水2的为21±18 mL / L,废水1为16±2 mL / L。泻湖样品。谷物废水的产氢量大大提高(210±56 mL / L)。假设每摩尔葡萄糖的理论最大氢产量为4摩尔氢,谷物废水的氢产量为0.61-0.79 mol / mol,其他样品的氢产量为1-2.52mol / mol。这表明,针对高COD和高糖废水,从废水中回收氢气是一种策略,因为认识到仅糖含量不足以预测氢气产量。在二室MFC中对谷物废水(稀释至595 mg-COD / L)进行的初步测试表明,最高值为81±7 mW / m〜2(以阳极表面积为标准),或每升25±2 mA废水,最终COD <30 mg / L(95%去除)。使用单腔MFC和预发酵废水,最大功率密度为371±10mW / m〜2(每升废水53.5±1.4 mA)。这些结果表明,使用MFC将生物制氢和发电联系起来是可行的,以便实现废水处理和生物能源生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号