首页> 外文期刊>Water Research >A modeling approach integrating microbial activity, mass transfer, and geochemical processes to interpret biological assays: An example for PCE degradation in a multi-phase batch setup
【24h】

A modeling approach integrating microbial activity, mass transfer, and geochemical processes to interpret biological assays: An example for PCE degradation in a multi-phase batch setup

机译:一种对微生物活性,传质和地球化学过程的建模方法来解释生物学测定:多相批量设置中PCE劣化的示例

获取原文
获取原文并翻译 | 示例
           

摘要

The rate at which organic contaminants can be degraded in aquatic environments is not only dependent upon specific degrading bacteria, but also upon the composition of the microbial community, mass transfer of the contaminant, and abiotic processes that occur in the environment. In this study, we present three-phase batch experiments of tetrachloroethene (PCE) degradation by a consortium of organohalide-respiring bacteria, cultivated alone or in communities with iron- and/or sulfate-reducers. We developed a modeling approach to quantitatively evaluate the experimental results, comprised of chemical and biomolecular time series data. The model utilizes the IPhreeqc module to couple multiphase mass transfer between gaseous, organic and aqueous phases with microbial and aquatic geochemical processes described using the geochemical code PHREEQC. The proposed approach is able to capture the contaminant degradation, the microbial population dynamics, the effects of multi-phase kinetic mass transfer and sample removal, and the geochemical reactions occurring in the aqueous phase. The model demonstrates the importance of aqueous speciation and abiotic reactions on the bioavailability of the substrates. The model-based interpretation allowed us to quantify the reaction kinetics of the different bacterial guilds. The model further revealed that the inclusion of sulfate-reducing bacteria lowers the rate of PCE degradation and that this effect is moderated in the presence of iron-reducing bacteria. (C) 2019 Elsevier Ltd. All rights reserved.
机译:有机污染物可以在水生环境中降解的速率不仅依赖于特异性降级的细菌,而且依赖于细菌,而且还在微生物群落的组成,污染物的传质和环境中发生的非生物过程。在这项研究中,我们介绍了四氯乙烯(PCE)的三相批量实验,通过有机卤代物 - 呼吸细菌的联盟,单独培养或用铁和/或硫酸盐还原剂培养。我们开发了一种建模方法来定量评估化学和生物分子时间序列数据的实验结果。该模型利用IphReeqc模块在使用地球化学代码Phreeqc描述的微生物和水生地球化学过程之间耦合气态,有机和水相之间的多相质量传递。所提出的方法能够捕获污染物降解,微生物群体动力学,多相动力学传质和样品去除的影响,以及在水相中发生的地球化学反应。该模型表明,含水物质和非生物反应对基材的生物利用度的重要性。基于模型的解释使我们能够量化不同细菌公会的反应动力学。该模型进一步揭示了硫酸盐降低的细菌的含量降低了PCE降解的速率,并且在冰冷的细菌存在下进行这种效果。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号