首页> 外文期刊>Water Research >Efficient degradation of tetrabromobisphenol A by synergistic integration of Fe/Ni bimetallic catalysis and microbial acclimation
【24h】

Efficient degradation of tetrabromobisphenol A by synergistic integration of Fe/Ni bimetallic catalysis and microbial acclimation

机译:Fe / Ni双金属催化和微生物适应性协同整合有效降解四溴双酚A

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This study provides a novel technology for the degradation of tetrabromobisphenol A (TBBPA) via an interaction of Fe redox and a shift of functional microbial community. TBBPA was degraded by integration of synthesized Fe-Ni bimetallic particles and enriched microbial consortium within an aqueous system. This cooperative integration yielded the best TBBPA-degrading capacity (100% removal after treatment for 2 h) and highest TOC-removing efficiency (94.5% removal after treatment for 96 h), as well as the lowest toxicity to Vibrio fischeri (almost 0% growth inhibition during reaction). The synergistic mechanism of integrated system was clarified based on systematical analyses of the degradation processes as well as the shifts in microbial community. Owing to the microbial metabolism and the Fenton-like process of leaked Fe2+, Fe3+ and Ni2+ from Fe-Ni bimetallic catalyst, reactive oxidative species (ROS), including superoxide (center dot O-2(-)), hydroxyl radicals ((OH)-O-center dot) and hydrogen peroxide (H2O2) were produced and evaluated by multiple techniques. Moreover, the quenching experiments indicated that (OH)-O-center dot was the major ROS leading to TBBPA degradation, rather than H2O2 or center dot O-2(-). Based on the analysis of the 12 detected intermediates, three parallel pathways were proposed. It was clearly revealed that reductive and oxidative debromination, hydroxylation, and beta-scission simultaneously occurred in the integrated system. Fe non-randomly accelerated the enrichment of TBBPA-degrading microbes (e.g. Pseudomonas sp. and Citrobacter sp., etc.). Above all, this novel technology has great promise for field-applications for remediation of TBBPA-contaminated field. (C) 2017 Elsevier Ltd. All rights reserved.
机译:这项研究提供了一种新的技术,可通过铁氧化还原和功能性微生物群落的转移来降解四溴双酚A(TBBPA)。通过将合成的Fe-Ni双金属颗粒和富集的微生物财团整合到水性体系中,可降解TBBPA。这种合作整合产生了最佳的TBBPA降解能力(治疗2小时后100%去除)和最高TOC去除效率(96小时后94.5%去除),对费氏弧菌的毒性最低(几乎为0%)反应期间的生长抑制)。通过对降解过程以及微生物群落变化的系统分析,阐明了集成系统的协同机制。由于微生物的新陈代谢和Fe-Ni双金属催化剂中泄漏的Fe2 +,Fe3 +和Ni2 +的Fenton样过程,反应性氧化物质(ROS)包括超氧化物(中心点O-2(-)),羟基自由基((OH )-O-中心点)和过氧化氢(H2O2)的生产和评估采用多种技术。此外,淬灭实验表明,(OH)-O-中心点是导致TBBPA降解的主要ROS,而不是H2O2或中心点O-2(-)。在对12种中间体的分析基础上,提出了3条平行途径。清楚地表明,还原和氧化脱溴,羟基化和β-分裂同时发生在集成系统中。 Fe非随机地加速了降解TBBPA的微生物(例如假单胞菌属物种和柠檬酸杆菌属等)的富集。最重要的是,这项新颖的技术在现场应用中对被TBBPA污染的土壤进行修复具有广阔的前景。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Water Research》 |2017年第1期|471-480|共10页
  • 作者单位

    Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China;

    Michigan State Univ, Coll Agr & Nat Resources, E Lansing, MI 48824 USA;

    Michigan State Univ, Coll Agr & Nat Resources, E Lansing, MI 48824 USA;

    Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China;

    Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China;

    Chinese Univ Hong Kong, Sch Life Sci, Shatin, Hong Kong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tetrabromobisphenol A; Integration of Fe/Ni and microbes; Degradation mechanism; Microbial shift;

    机译:四溴双酚A;Fe / Ni与微生物的结合;降解机理;微生物迁移;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号