...
首页> 外文期刊>Water Research >Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization
【24h】

Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization

机译:寻常脱硫弧菌减少硫酸盐和可溶性Fe(III)的沉淀:电子供体调节细胞内电子流和纳米FeS结晶

获取原文
获取原文并翻译 | 示例
           

摘要

Fully understanding the metabolism of SRB provides fundamental guidelines for allowing the microorganisms to provide more beneficial services in water treatment and resource recovery. The electron transfer pathway of sulfate respiration by Desulfovibrio vulgaris is well studied, but still partly unresolved. Here we provide deeper insight by comprehensively monitoring metabolite changes during D. vulgaris metabolism with two electron donors, lactate and pyruvate, in presence or absence of citrate-chelated soluble Fe-III as an additional competing electron acceptor. H-2 was produced from lactate oxidation to pyruvate, but pyruvate oxidation produced mostly formate. Accumulation of lactate originated H-2 during lag phases inhibited pyruvate transformation to acetate. Sulfate reduction was initiated by lactate-originated H-2, but MQ-mediated e(-) flow initiated sulfate reduction without delay when pyruvate was the donor. When H-2-induced electron flow gave priority to Fe-III reduction over sulfate reduction, the long lag phase before sulfate reduction shortened the time for iron-sulfide crystallite growth and led to smaller mackinawite (Fe1+xS) nanocrystallites. Synthesizing all the results, we propose that electron flow from lactate or pyruvate towards Sai-reduction to H2S are through at least three routes that are regulated by the e(-) donor (lactate or pyruvate) and the presence or absence of another e- acceptor (Fell) here). These routes are not competing, but complementary: e.g., H-2 or formate production and oxidation were necessary for sulfite and disulfide/trisulfide reduction to sulfide. Our study suggests that the e(-) donor provides a practical tool to regulate and optimize SRB-predominant bioremediation systems. (C) 2017 Elsevier Ltd. All rights reserved.
机译:充分理解SRB的代谢提供了基本的指导方针,使微生物能够在水处理和资源回收中提供更多有益的服务。寻常脱硫弧菌呼吸硫酸盐的电子传递途径已得到很好的研究,但仍未部分解决。在这里,我们通过存在或不存在柠檬酸盐螯合的可溶性Fe-III作为另外的竞争性电子受体的情况下,通过乳酸和丙酮酸这两种电子供体,全面监测寻常果蝇代谢过程中的代谢物变化,从而提供更深入的见解。 H-2由乳酸氧化生成丙酮酸,但丙酮酸氧化主要生成甲酸。滞后阶段乳酸源H-2的积累抑制了丙酮酸转化为乙酸盐。硫酸盐还原是由源自乳酸盐的H-2引发的,但是当丙酮酸是供体时,MQ介导的e(-)流动可立即引发硫酸盐还原。当H-2-诱导的电子流优先于Fe-III还原而不是硫酸盐还原时,硫酸盐还原之前的长滞后相缩短了硫化铁微晶生长的时间,并导致了较小的马基钠铁矿(Fe1 + xS)纳米微晶。综合所有结果,我们认为,从乳酸或丙酮酸向Sai还原为H2S的电子流至少通过三种受e(-)供体(乳酸或丙酮酸)以及是否存在其他e-接受者(点击此处)。这些途径不是相互竞争的,而是互补的:例如,H-2或甲酸的产生和氧化对于亚硫酸盐和二硫化物/三硫化物还原为硫化物是必需的。我们的研究表明,e(-)供体为调节和优化SRB为主的生物修复系统提供了一种实用工具。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Water Research》 |2017年第1期|91-101|共11页
  • 作者单位

    Arizona State Univ, Swette Ctr Environm Biotechnol, Tempe, AZ 85287 USA|1001 S McAllister Ave, Tempe, AZ 85207 USA;

    Arizona State Univ, Swette Ctr Environm Biotechnol, Tempe, AZ 85287 USA|Tongji Univ, Coll Environm Sci & Engn, Shanghai, Peoples R China;

    Arizona State Univ, Swette Ctr Environm Biotechnol, Tempe, AZ 85287 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    D. vulgaris; SO42- reduction; Soluble Fe-III reduction; Iron-sulfide; Crystallization;

    机译:D.寻常型;SO42-还原;可溶性Fe-III还原;硫化铁;结晶;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号