首页> 外文期刊>Water Research >Assessing toluene biodegradation under temporally varying redox conditions in a fractured bedrock aquifer using stable isotope methods
【24h】

Assessing toluene biodegradation under temporally varying redox conditions in a fractured bedrock aquifer using stable isotope methods

机译:使用稳定同位素方法评估裂隙基岩含水层中随时间变化的氧化还原条件下的甲苯生物降解

获取原文
获取原文并翻译 | 示例
           

摘要

In complex hydrogeological settings little is known about the extent of temporally varying redox conditions and their effect on aromatic hydrocarbon biodegradation. This study aims to assess the impact of changing redox conditions over time on aromatic hydrocarbon biodegradation in a fractured bedrock aquifer using stable isotope methods. To that end, four snapshots of highly spatio-temporally resolved contaminant and redox sensitive species concentrations, as well as stable isotope ratio profiles, were determined over a two-years time period in summer 2016, spring 2017, fall 2017 and summer 2018 in a toluene contaminated fractured bedrock aquifer. The concentration profiles of redox sensitive species and stable isotope ratio profiles for dissolved inorganic carbon (DIG) and sulfate (delta C-13(DIC), delta S-34(SO4), delta O-18(SO4)) revealed that the aquifer alternates between oxidising (spring 2017/summer 2018) and reducing conditions (summer 2016/fall 2017). This alternation was attributed to a stronger aquifer recharge with oxygen-rich meltwater in spring 2017/summer 2018 compared to summer 2016/fall 2017. The temporally varying redox conditions coincided with various extents of toluene biodegradation revealed by the different magnitude of heavy carbon (C-13) and hydrogen (H-2) isotope enrichment in toluene. This indicated that the extent of toluene biodegradation and its contribution to plume attenuation was controlled by the temporally changing redox conditions. The highest toluene biodegradation was observed in summer 2016, followed by spring 2017 and fall 2017, whereby these temporal changes in biodegradation occurred throughout the whole plume. Thus, under temporally varying recharge conditions both the core and the fringe of a contaminant plume can be replenished with terminal electron acceptors causing biodegradation in the whole plume and not only at its distal end as previously suggested by the plume fringe concept. Overall, this study highlights the importance of highly temporally resolved groundwater monitoring to capture temporally varying biodegradation rates and to accurately predict biodegradation induced contaminant attenuation in fractured bedrock aquifers. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在复杂的水文地质环境中,关于氧化还原条件随时间变化的程度及其对芳烃生物降解的影响知之甚少。这项研究的目的是使用稳定的同位素方法评估氧化还原条件随时间的变化对裂隙基岩含水层中芳烃生物降解的影响。为此,在2016年夏季,2017年春季,2017年秋季和2018年夏季的两年时间内,确定了高度时空分辨的污染物和氧化还原敏感物种浓度以及稳定的同位素比率分布的四个快照。甲苯污染了破裂的基岩含水层。氧化还原敏感物质的浓度分布图和溶解的无机碳(DIG)和硫酸盐的稳定同位素比分布图(δC-13(DIC),δS-34(SO4),δO-18(SO4))显示出含水层在氧化(2017年春季/ 2018年夏季)和还原条件(2016年夏季/ 2017年秋季)之间交替变化。这种交替的原因是,与2016年夏季/ 2017年秋季相比,2017年春季/ 2018年夏季使用富含氧气的熔融水使含水层补给更强。氧化还原条件随时间变化,同时重金属含量不同也显示出不同程度的甲苯生物降解(C -13)和氢(H-2)同位素在甲苯中的富集。这表明甲苯生物降解的程度及其对羽流衰减的贡献是由随时间变化的氧化还原条件控制的。在2016年夏季观察到最高的甲苯生物降解,其次是2017年春季和2017年秋季,由此生物降解的这些时间变化发生在整个羽流中。因此,在随时间变化的充电条件下,污染物羽状流的核心和边缘都可以补充末端电子受体,从而导致整个羽状体的生物降解,而不仅是如先前羽状流形概念所暗示的那样,其整个末端都会发生生物降解。总的来说,这项研究强调了高度时间分辨的地下水监测对于捕获随时间变化的生物降解率并准确预测生物降解引起的裂隙基岩含水层中污染物衰减的重要性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号