首页> 外文期刊>Water, Air, and Soil Pollution >Removal of Microcystin-LR from Drinking Water Using a System Involving Oxidation and Adsorption
【24h】

Removal of Microcystin-LR from Drinking Water Using a System Involving Oxidation and Adsorption

机译:使用涉及氧化和吸附的系统去除饮用水中的微囊藻毒素-LR

获取原文
获取原文并翻译 | 示例
       

摘要

The aim of the present study was to evaluate the efficiency of removal of microcystin-LR from drinking water using a three-stage bench-scale treatment comprising Fenton oxidation/coagulation/flocculation/ sedimentation, filtration through a sand column (15 cm bed), and adsorption onto a granular activated carbon (GAC) column with 15-cm (GAC1) or 20-cm bed (GAC2). Optimal first-stage conditions were determined to be FeSO4 center dot 7H(2)O 0.054 mM, H2O2 0.162 mM, coagulation pH 8.4, sedimentation time 15 min, and flow rate 2 L h(-1). Under these conditions, water turbidity was reduced from 5.8 to 3.0 uT, apparent color from 115 to 81 uH, and the concentration of microcystin-LR from 18.52 to 9.59 mu g L-1. Column GAC2 was more efficient than GAC1, as shown by the higher adsorption capacity (4.15 mu g g(-1)) and lower carbon usage rate (1.70 g L-1). Microcystin breakthrough occurred after 2 h of operation with GAC1 column and after 6 h with GAC2 column, and the greater efficiency of the latter column was confirmed by the high qe (4.15 mu g g-1) and low CUR (1.70 g L-1) values attained. The results demonstrate that adsorption on a GAC column plays an essential role in reducing the concentration of microcystin-LR to levels compatible with current legislation. By-products of the Fenton oxidation of microcystin-LR were analyzed by mass spectrometry, and the ADDA amino acid present in the analyte was identified from its characteristic fragment at m/z 135. It is concluded that the combination of Fenton oxidation and adsorption on a GAC column represents a viable option for purifying eutrophic water containing high concentrations of microcystin-LR.
机译:本研究的目的是评估三阶段台式规模的处理方法从饮用水中去除微囊藻毒素-LR的效率,包括芬顿氧化/凝聚/絮凝/沉淀,通过砂柱(15厘米床)过滤,并用15厘米(GAC1)或20厘米床(GAC2)吸附到颗粒活性炭(GAC)色谱柱上。确定最佳的第一步条件为FeSO4中心点7H(2)O 0.054 mM,H2O2 0.162 mM,凝结pH 8.4,沉降时间15分钟和流速2 L h(-1)。在这些条件下,水浊度从5.8 uT降低到3.0 uT,表观颜色从115 uH降低到81 uH,微囊藻毒素LR的浓度从18.52μgL-1降低到9.59μgL-1。 GAC2柱比GAC1效率更高,这表现为更高的吸附容量(4.15μg g(-1))和更低的碳使用率(1.70 g L-1)。微囊藻毒素的突破发生在GAC1色谱柱操作2小时后和GAC2色谱柱分析6小时之后,而高qe(4.15μg g-1)和低CUR(1.70 g L-1)证实了后者的更高效率。 )获得的价值。结果表明,GAC柱上的吸附在将微囊藻毒素-LR的浓度降低到与现行法规兼容的水平方面起着至关重要的作用。通过质谱分析了微囊藻毒素-LR的芬顿氧化的副产物,并从其特征片段在m / z 135处鉴定了分析物中存在的ADDA氨基酸。 GAC色谱柱代表了纯化含高浓度微囊藻毒素-LR的富营养水的可行选择。

著录项

  • 来源
    《Water, Air, and Soil Pollution》 |2017年第9期|337.1-337.14|共14页
  • 作者单位

    Univ Estadual Paraiba, Ctr Ciencias & Tecnol, Dept Engn Sanit & Ambiental, Av Baraunas 351,Campus Univ, BR-58429500 Campina Grande, PB, Brazil;

    Univ Estadual Paraiba, Ctr Ciencias & Tecnol, Dept Engn Sanit & Ambiental, Av Baraunas 351,Campus Univ, BR-58429500 Campina Grande, PB, Brazil;

    Univ Estadual Paraiba, Ctr Ciencias & Tecnol, Dept Engn Sanit & Ambiental, Av Baraunas 351,Campus Univ, BR-58429500 Campina Grande, PB, Brazil;

    Univ Estadual Paraiba, Ctr Ciencias & Tecnol, Dept Engn Sanit & Ambiental, Av Baraunas 351,Campus Univ, BR-58429500 Campina Grande, PB, Brazil;

    Univ Estadual Paraiba, Ctr Ciencias & Tecnol, Dept Engn Sanit & Ambiental, Av Baraunas 351,Campus Univ, BR-58429500 Campina Grande, PB, Brazil;

    Univ Estadual Paraiba, Ctr Ciencias & Tecnol, Dept Engn Sanit & Ambiental, Av Baraunas 351,Campus Univ, BR-58429500 Campina Grande, PB, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Water treatment; Bloom-forming cyanobacteria; Microcystin-LR; Fenton oxidation; Coagulation; Granular activated carbon from palm (dende) coconut shells;

    机译:水处理;形成蓝藻的细菌;微囊藻毒素-LR;Fenton氧化;混凝;椰子壳的颗粒活性炭;
  • 入库时间 2022-08-17 13:37:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号