首页> 外文期刊>Waste Management >Calculation of combustion gas flow rate and residence time based on stack gas data
【24h】

Calculation of combustion gas flow rate and residence time based on stack gas data

机译:根据烟囱气体数据计算燃气流量和停留时间

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In many situations, it is desired to estimate the combustion chamber gas residence time of operating combustion systems. This is typically accomplished by performing a mass and energy balance around the combustion chamber. Unfortunately, the detailed physical, chemical, and thermodynamic data needed for each of the feed streams, effluents, and combustion gases are often not readily available. Further, a rigorous mass and energy balance calculation can be time-consuming unless a computerized routine is available. It is possible, however, to calculate the combustion gas flow rate and the gas phase residence time of a combustion chamber when only stack gas data and the combustion chamber temperature are available. The technique presented is applicable to systems that incorporate adiabatic saturation cooling of the flue gas using direct water evaporation in a quench chamber or similar device. The technique can be extended to systems in which adiabatic saturation cooling is not achieved (i.e. partial quenching) or those systems incorporating external heat removal (i.e. boilers, indirect scrubber water cooling, etc. ). The procedure for determining the combustion chamber flow rate utilizes the concept of a mass and energy balance ()n a simplified form) to relate stack gas data to combustion chamber conditions. In the case of a system using adiabatic saturation cooling, the energy in the hot combustion gas is used to directly evaporate water sprayed into the combustion gas stream. The temperature of the combined combustion gas and water vapor stream decreases as energy (expressed as sensible heat and heat of vaporization) is transferred from the combustion gas to the water. This temperature decrease reaches a practical limit when the combustion gas stream becomes saturated with water (the adiabatic saturation temperature). Therefore, assuming that there is negligible leakage of air into the system, the mass of stack gas is equal to the mass of combustion gas plus the amount of water added for cooling. Further, since the water vapor and combustion gas are combined, no energy has left the system, thus the total enthalpy of the cooled stack gas stream is equal to the total enthalpy of the hot combustion gas stream. A simplified mass and energy balance is used to determine the moisture added to the combustion gas stream for cooling, and then the mass flow rate of combustion gas is determined by subtracting this amount of moisture from the measured stack gas mass flow rate.
机译:在许多情况下,期望估计正在运行的燃烧系统的燃烧室气体停留时间。这通常是通过在燃烧室周围进行质量和能量平衡来实现的。不幸的是,每种进料流,流出物和燃烧气体所需的详细的物理,化学和热力学数据通常不容易获得。此外,除非可以使用计算机程序,否则严格的质量和能量平衡计算可能会很耗时。然而,当仅可获得烟道气数据和燃烧室温度时,可以计算燃烧气体的流量和燃烧室的气相停留时间。提出的技术适用于在淬火室或类似设备中使用直接水蒸发对烟气进行绝热饱和冷却的系统。该技术可以扩展到没有实现绝热饱和冷却的系统(即部分淬火)或结合了外部除热功能的系统(即锅炉,间接洗涤塔水冷却等)。确定燃烧室流速的过程利用质量和能量平衡的概念(简化形式)将烟囱气体数据与燃烧室条件相关联。在使用绝热饱和冷却的系统中,热燃烧气体中的能量用于直接蒸发喷射到燃烧气流中的水。随着能量(表示为显热和汽化热)从燃烧气体转移到水中,燃烧气体和水蒸气组合流的温度降低。当燃烧气流被水饱和时(绝热饱和温度),该温度下降达到实际极限。因此,假设有少量的空气泄漏到系统中,则烟囱气体的质量等于燃烧气体的质量加上为冷却而添加的水量。此外,由于水蒸气和燃烧气体被合并,所以没有能量离开系统,因此冷却的烟囱气流的总焓等于热燃烧气流的总焓。使用简化的质量和能量平衡来确定添加到燃烧气流中进行冷却的水分,然后通过从测量的烟道气质量流速中减去该水分含量来确定燃烧气体的质量流速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号