...
首页> 外文期刊>Waste Management >Model-based interpretation of methane oxidation and respiration processes in landfill biocovers: 3-D simulation of laboratory and pilot experiments
【24h】

Model-based interpretation of methane oxidation and respiration processes in landfill biocovers: 3-D simulation of laboratory and pilot experiments

机译:垃圾填埋场甲烷氧化和呼吸过程的模型解释:3-D实验室和试验实验的模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Landfill biocovers are an efficient strategy for the mitigation of greenhouse gas emissions from landfills. A complex interplay between key physical and reactive processes occurs in biocovers and affects the transport of gas components. Therefore, numerical models can greatly help the understanding of these systems, their design and optimal operation. In this study, we developed a 3-D multicomponent modeling approach to quantitatively interpret experimental datasets measured in the laboratory and in pilot-scale landfill biocovers. The proposed model is able to reproduce the observed spatial and temporal dynamics of CH_4, O_2 and CO_2 migration in biocovers under different operating conditions and demonstrates the importance of dimensionality in understanding the propagation of gas flow and migration of gas components in such porous media. The model allowed us to capture the coupled transport behavior of gas components, to evaluate the exchange of gas fluxes at the interface between the biocover surface and free air flow, and to investigate the effects of different gas injection patterns on the distribution of gas components within biocovers. The model also helps elucidating the dynamics and competition between methane oxidation and respiration processes observed in the different experimental setups. The simulation outcomes reveal that increasing availability of methane (i.e., higher injection flow rates or higher fractions of CH_4 in the injected gas composition) results in progressive dominance of methane oxidation in the biocovers and moderates the impact of respiration.
机译:垃圾填埋场生物转移是垃圾填埋场温室气体排放的有效策略。关键物理和反应过程之间的复杂相互作用发生在生物胶质中,并影响气体组分的运输。因此,数值模型可以极大地帮助了解这些系统,其设计和最佳操作。在这项研究中,我们开发了一种三维多组分建模方法,以定量解释在实验室和试点垃圾填埋场中测量的实验数据集。所提出的模型能够在不同的操作条件下再现在Biocove中的观察到的CH_4,O_2和CO_2迁移的空间和时间动态,并证明了维度在理解这种多孔介质中气体成分的迁移和气体组分的迁移的重要性。该模型允许我们捕获气体组分的耦合传输行为,以评估生物膜表面和自由空气流动之间的界面处的气体通量的交换,并研究不同气体喷射模式对气体组件分布的影响Biocove。该模型还有助于阐明在不同实验装置中观察到的甲烷氧化与呼吸过程之间的动态和竞争。模拟结果表明,甲烷的可用性增加(即,注射的气体组合物中的较高注射流量或CH_4的更高级分)导致甲烷氧化在生物胶质中的逐步优势,并使呼吸的影响激增。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号