首页> 外文期刊>Waste Management >Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures
【24h】

Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures

机译:在不同热解温度下得到的原料和生物炭的热重,热化学和红外光谱表征

获取原文
获取原文并翻译 | 示例
           

摘要

Biochar is a promising biomass product for soil amendment, remediation, and carbon sequestration. In this study, the effect of pyrolysis temperature and feedstock type on biochar physiochemical properties including stability, recalcitrance, and surface functionality were investigated through thermogravimetric, thermochemical, and infrared spectral analyses. It is concluded in this research that pyrolysis temperature was the dominating factor determining the inherent characteristics of the derived biochar. High temperature pyrolysis (= 600 degrees C) derived the biochar with a high pH, stability, recalcitrance, and higher heating value (HHV). On the other hand, the biochar produced from low-temperature pyrolysis (= 400 degrees C) had a larger mass yield, energy recovery, more volatile content, and diverse surface functional groups. The different biochar characteristics will lead to different agricultural and environmental applications. Also in this research, a carbon-based recalcitrance index (R-50.c) based on a novel multi-element scanning thermal analysis (MESTA) was proposed to improve the current recalcitrance index (R-50) based on the conventional thermogravimetric analysis (TGA) for the evaluation of biochar's carbon sequestration potential. The direct comparison of the two indexes, as well as the results from the infrared spectral analysis and ultimate analysis, indicated that R-50,R-c was better at characterizing biochar's recalcitrance, especially when the mineral content of the feedstock was high. In addition, the cost breakdown indicated that the pretreatment of feedstock was the costliest process during biochar production. (C) 2018 Elsevier Ltd. All rights reserved.
机译:生物炭是用于土壤改良,修复和固碳的一种有前途的生物质产品。在这项研究中,通过热重分析,热化学分析和红外光谱分析,研究了热解温度和原料类型对生物炭物理化学特性(包括稳定性,顽固性和表面功能)的影响。在这项研究中得出的结论是,热解温度是决定衍生生物炭固有特性的主要因素。高温热解(> = 600摄氏度)衍生出具有高pH值,稳定性,顽抗性和较高发热量(HHV)的生物炭。另一方面,由低温热解(<= 400摄氏度)产生的生物炭具有更高的质量产率,能量回收率,更多的挥发物含量以及多样的表面官能团。不同的生物炭特性将导致不同的农业和环境应用。同样在这项研究中,提出了一种基于新型多元素扫描热分析(MESTA)的碳基顽固指数(R-50.c),以提高基于常规热重分析的当前顽固指数(R-50) (TGA)用于评估生物炭的固碳潜力。这两个指标的直接比较,以及红外光谱分析和最终分析的结果表明,R-50,R-c在表征生物炭的难降解性方面表现更好,尤其是当原料的矿物质含量高时。此外,成本细分表明,原料预处理是生物炭生产过程中最昂贵的过程。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号