...
首页> 外文期刊>Tunnelling and underground space technology >Geological and geomechanical heterogeneity in deep hydropower tunnels: A rock burst failure case study
【24h】

Geological and geomechanical heterogeneity in deep hydropower tunnels: A rock burst failure case study

机译:深水电站隧道地质与地质力学非均质性:爆破破坏案例研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Tunneling in the Himalayas is full of surprises due to the active state of stresses, along with hostile geological and geomechanical heterogeneities. These sometimes go unnoticed during the design stage, which can result in rock burst type failures, which is the case with a recently completed hydroelectric project in Pakistan. In this project, twin headrace tunnels are excavated by tunnel boring machines (TBMs). Several rock bursts have occurred in the tunnels of the case study project, which are influenced by many factors like in-situ and excavation induced stresses, rock type and its brittleness, bedding orientation, geological anomalies, and geological structures. The Himalayas lay on the most active plate margin zone, and excavation here is more difficult than in the Andes, Alps, or any other mountain belt in the world. The project area is surrounded by the Main Boundary Thrust (MBT), the most active fault in the region, along with local faults that pass through the headrace tunnels. Due to this active stress condition, thrust faulting is common, and a complex structural geological regime is prevalent. Abnormal in-situ stress conditions at a deep depth have caused unique geological anomalies in the unique sedimentary geological settings of the project area. The TBM, which has little flexibility during excavation, has done little to disperse the in-situ stresses near the boundary of the tunnel and has exaggerated the situation. The two rock burst events of January 13, 2016, and May 31, 2015, are selected for this study; they are classified as strain and fault-slip bursts, respectively. Empirical approaches have been used to evaluate the proneness of rock burst occurrence. Numerical simulation has also predicted the actual failure zone well, in such deep excavation. The details documented for these events not only provide a basis for understanding the process of rock burst in the Himalayas but also provide a good reference regarding the occurrence of rock burst in deep civil tunnels excavated in the hard rock.
机译:由于应力的活跃状态,以及充满敌意的地质和地质力学异质性,喜马拉雅山的隧道开挖充满了惊喜。这些有时在设计阶段没有引起注意,这可能导致岩爆型故障,最近在巴基斯坦完成的水电项目就是这种情况。在该项目中,隧道掘进机(TBM)开挖了双头竞赛隧道。案例研究项目的隧道中发生了数次岩爆,这些岩爆受到许多因素的影响,例如原位和开挖引起的应力,岩石类型及其脆性,层理取向,地质异常和地质结构。喜马拉雅山脉位于最活跃的板块边缘地带,与安第斯山脉,阿尔卑斯山或世界上任何其他山区相比,这里的开挖难度更大。该项目区域被该地区最活跃的断层主边界冲断层(MBT)以及穿过头种族隧道的局部断层所包围。由于这种活跃的应力条件,逆冲断层是常见的,并且复杂的构造地质状况十分普遍。深部异常的原位应力条件在项目区独特的沉积地质环境中造成了独特的地质异常。 TBM在开挖过程中几乎没有灵活性,在分散隧道边界附近的地应力方面几乎没有做任何事情,并且使情况更加夸大。本研究选择了2016年1月13日和2015年5月31日的两次岩爆事件。它们分别被分类为应变和断层突变。已经使用经验方法来评估岩爆发生的倾向性。数值模拟也很好地预测了这种深基坑中的实际破坏区域。这些事件的详细记录不仅为了解喜马拉雅山的岩石破裂过程提供了基础,而且还为在硬岩石中开挖的深层民用隧道中发生岩石破裂提供了很好的参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号