...
首页> 外文期刊>Tree Physiology >Toward an improved model of maple sap exudation: the location and role of osmotic barriers in sugar maple, butternut and white birch
【24h】

Toward an improved model of maple sap exudation: the location and role of osmotic barriers in sugar maple, butternut and white birch

机译:建立枫树汁液渗出的改进模型:糖枫,胡桃木和白桦树中渗透屏障的位置和作用

获取原文
获取原文并翻译 | 示例

摘要

Two theories have been proposed to explain how high positive pressures are developed in sugar maple stems when temperatures fluctuate around freezing. The Milburn—O'Malley theory proposes that pressure development is purely physical and does not require living cells or sucrose. The osmotic theory invokes the involvement of living cells and sucrose to generate an osmotic pressure difference between fibers and vessels, which are assumed to be separated by an osmotic barrier. We analyzed wood of Acer saccharum Marsh., Juglans cinerea L. and Betula papyrifera Marsh. (all generate positive pressures) examining three critical components of the osmotic model: pits in cell walls, selectivity of the osmotic barrier and stability of air bubbles under positive xylem pressure. We examined the distribution and type of pits directly by light and scanning electron microscopy (SEM), and indirectly by perfusion of branch segments with fluorescent dyes with molecular masses similar to sucrose. The latter approach allowed us to use osmotic surrogates for sucrose that could be tracked by epifluorescence. Infusion experiments were used to assess the compartmentalization of sucrose and to determine the behavior of gas bubbles as predicted by Fick's and Henry's laws. The SEM images of sugar maple revealed a lack of pitting between fibers and vessels but connections between fiber-tracheids and vessels were present. Fluorescein-perfusion experiments demonstrated that large molecules do not diffuse into libriform fibers but are confined within the domain of vessels, parenchyma and fiber-tracheids. Results of the infusion experiments were in agreement with those of the fluorescein perfusions and further indicated the necessity of a compartmentalized osmolyte to drive stem pressure, as well as the inability of air bubbles to maintain such pressure because of instability. These results support the osmotic model and demonstrate that the secondary cell wall is an effective osmotic barrier for molecules larger than 300 g mol?1.
机译:已经提出了两种理论来解释当温度在冻结附近波动时,糖枫茎中如何产生高正压。 Milburn-O'Malley理论提出,压力发展纯粹是物理的,不需要活细胞或蔗糖。渗透理论引起了活细胞和蔗糖的参与,从而在纤维和血管之间产生了渗透压差,这被认为是由渗透屏障隔开的。我们分析了宏cer,核桃和灰桦沼泽地的木材。 (均产生正压)检查渗透模型的三个关键组成部分:细胞壁上的凹坑,渗透屏障的选择性以及在木质部正压下的气泡稳定性。我们直接通过光和扫描电子显微镜(SEM)来检查凹坑的分布和类型,并通过用分子量类似于蔗糖的荧光染料灌注分支段来间接检查凹坑的分布和类型。后一种方法使我们能够使用渗透替代物来替代蔗糖,而可通过落射荧光进行跟踪。输液实验用于评估蔗糖的分隔性,并确定气泡的行为,如菲克定律和亨利定律所预测的。糖枫的SEM图像显示纤维与血管之间没有凹痕,但存在纤维气管与血管之间的连接。荧光素灌注实验表明,大分子不会扩散到libriform纤维中,而是被限制在血管,实质和纤维气管的区域内。灌注实验的结果与荧光素灌注的结果一致,并进一步表明必须使用分区渗透压来驱动杆压,以及由于不稳定而无法保持气泡的压力。这些结果支持了渗透模型,并证明了次级细胞壁是大于300 g mol ?1 的分子的有效渗透屏障。

著录项

  • 来源
    《Tree Physiology 》 |2008年第8期| 1145-1155| 共11页
  • 作者单位

    School of Forest Resources University of Maine Orono ME 04469 USA;

    Corresponding author jdamian.cirelli{at}gmail.com;

    Department of Renewable Resources University of Alberta Edmonton AB T6G 2H1 Canada;

    USDA Forest Service 705 Spear Street S. Burlington VT 05403 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号