...
首页> 外文期刊>Transportation research >Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks
【24h】

Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks

机译:单个目的地交通网络的动态系统最佳解决方案中的最佳队列放置

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The Dynamic System Optimum (DSO) traffic assignment problem aims to determine a time-dependent routing pattern of travellers in a network such that the given time dependent origin-destination demands are satisfied and the total travel time is at a minimum, assuming some model for dynamic network loading. The network kinematic wave model is now widely accepted as such a model, given its realism in reproducing phenomena such as transient queues and spillback to upstream links. An attractive solution strategy for DSO based on such a model is to reformulate as a set of side constraints apply a standard solver, and to this end two methods have been previously proposed, one based on the discretisation scheme known as the Cell Transmission Model (CTM), and the other based on the Link Transmission Model (LTM) derived from variational theory. In the present paper we aim to combine the advantages of CTM (in tracking time-dependent congestion formation within a link) with those of LTM (avoiding cell discretisation, providing a more computationally attractive with much fewer constraints). The motivation for our work is the previously-reported possibility for DSO to have multiple solutions, which differ in where queues are formed and dissipated in the network. Our aim is to find DSO solutions that optimally distribute the congestion over links inside the network which essentially eliminate avoidable queue spillbacks. In order to do so, we require more information than the LTM can offer, but wish to avoid the computational burden of CTM for DSO. We thus adopt an extension of the LTM called the Two-regime Transmission Model (TTM), which is consistent with LTM at link entries and exits but which is additionally able to accurately track the spatial and temporal formation of the congestion boundary within a link (which we later show to be a critical element, relative to LTM). We set out the theoretical background necessary for the formulation of the network-level TTM as a set of linear side constraints. Numerical experiments are used to illustrate the application of the method to determine DSO solutions avoiding spillbacks, reduce eliminate the congestion and to show the distinctive elements of adopting TTM over LTM. Furthermore, in comparison to a fine level CTM-based DSO method, our formulation is seen to significantly reduce the number of linear constraints while maintaining a reasonable accuracy. (C) 2015 Elsevier Ltd. All rights reserved.
机译:动态系统最佳(DSO)流量分配问题旨在确定网络中旅行者的时间相关路由模式,从而满足给定时间相关的起点-目的地需求,并且总旅行时间最小,并假设以下模型动态网络加载。网络运动波模型现在被广泛接受为这种模型,因为它可以再现瞬态队列和溢出到上游链路等现象。基于这种模型的DSO有吸引力的解决方案策略是,在应用标准求解器的一组侧面约束条件下重新制定公式,为此,先前已经提出了两种方法,一种是基于称为细胞传输模型(CTM)的离散化方案。 ),以及其他基于变分理论的链路传输模型(LTM)。在本文中,我们旨在将CTM的优势(跟踪链路中时间相关的拥塞形成)与LTM的优势(避免单元离散化,以更少的约束提供更多的计算吸引力)结合起来。我们工作的动机是先前报告的DSO具有多种解决方案的可能性,这些解决方案的区别在于队列在网络中的形成和消散位置。我们的目标是找到DSO解决方案,以在网络内部的链路上最佳地分配拥塞,从而基本上消除可避免的队列溢出。为此,我们需要的信息比LTM所能提供的更多,但是希望避免CTM对于DSO的计算负担。因此,我们采用了LTM的扩展,称为二态传输模型(TTM),该扩展与链路入口和出口处的LTM一致,但它还能够准确地跟踪链路内拥塞边界的时空形成(相对于LTM,我们稍后将其显示为关键要素)。我们提出了将网络级TTM公式化为一组线性边约束的必要理论背景。数值实验用于说明该方法在确定DSO解决方案,避免溢出,减少消除拥塞以及展示采用TTM而非LTM的独特元素方面的应用。此外,与基于CTM的精细DSO方法相比,我们的公式可显着减少线性约束的数量,同时保持合理的精度。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号