首页> 外文期刊>Transport in Porous Media >The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV
【24h】

The Complexity of Porous Media Flow Characterized in a Microfluidic Model Based on Confocal Laser Scanning Microscopy and Micro-PIV

机译:基于共聚焦激光扫描显微镜和微PIV的微流体模型中的多孔介质流动的复杂性

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, the complexity of a steady-state flow through porous media is revealed using confocal laser scanning microscopy (CLSM). Micro-particle image velocimetry (micro-PIV) is applied to construct movies of colloidal particles. The calculated velocity vector fields from images are further utilized to obtain laminar flow streamlines. Fluid flow through a single straight channel is used to confirm that quantitative CLSM measurements can be conducted. Next, the coupling between the flow in a channel and the movement within an intersecting dead-end region is studied. Quantitative CLSM measurements confirm the numerically determined coupling parameter from earlier work of the authors. The fluid flow complexity is demonstrated using a porous medium consisting of a regular grid of pores in contact with a flowing fluid channel. The porous media structure was further used as the simulation domain for numerical modeling. Both the simulation, based on solving Stokes equations, and the experimental data show presence of non-trivial streamline trajectories across the pore structures. In view of the results, we argue that the hydrodynamic mixing is a combination of non-trivial streamline routing and Brownian motion by pore-scale diffusion. The results provide insight into challenges in upscaling hydrodynamic dispersion from pore scale to representative elementary volume (REV) scale. Furthermore, the successful quantitative validation of CLSM-based data from a microfluidic model fed by an electrical syringe pump provided a valuable benchmark for qualitative validation of computer simulation results.
机译:在该研究中,使用共聚焦激光扫描显微镜(CLSM)揭示了通过多孔介质的稳态流动的复杂性。施加微粒子图像速度(Micro-PIV)以构建胶体颗粒的电影。来自图像的计算的速度矢量场进一步利用以获得层流流程。通过单个直通道的流体流动用于确认可以进行定量CLSM测量。接下来,研究了通道中的流程与交叉终端区域内的移动之间的耦合。定量CLSM测量确认了来自作者早期工作的数值确定的耦合参数。使用由与流动流体通道接触的孔的常规栅格组成的多孔介质来证明流体流动复杂性。多孔介质结构进一步用作数值建模的模拟结构域。基于求解Stokes方程的模拟,以及实验数据显示在孔结构上存在非琐碎的流线轨迹。鉴于结果,我们认为流体动力混合是通过孔径扩散的非琐碎流线路路由和布朗运动的组合。结果在孔隙尺度与代表性基本体积(REV)规模中,探讨了升高的流体动力分散体中的挑战。此外,通过电气注射器泵进料的微流体模型的基于CLSM的数据的成功定量验证提供了有价值的基准,用于定性验证计算机仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号