...
首页> 外文期刊>Transport in Porous Media >Efficient algorithm for modeling transport in porous media with mass exchange between mobile fluid and reactive stationary media
【24h】

Efficient algorithm for modeling transport in porous media with mass exchange between mobile fluid and reactive stationary media

机译:流动介质与反应性固定介质之间进行质量交换的高效模型,用于模拟多孔介质中的传输

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We compare two approaches to numerically solve the mathematical model of reactive mass transport in porous media with exchange between the mobile fluid and the stationary medium. The first approach, named the "monolithic algorithm," is the approach in which a standard finite-difference discretization of the governing transport equations yields a single system of equations to be solved at each time step. The second approach, named the "system-splitting algorithm," is here applied for the first time to the problem of transport with mass exchange. The system-splitting algorithm (SSA) solves two separate systems of equations at each time step: one for transport in the mobile fluid, and one for uptake and reaction in the stationary medium. The two systems are coupled by a boundary condition at the mobile-immobile interface, and are solved iteratively. Because the SSA involves the solution of two smaller systems compared to that of the monolithic algorithm, the computation time may be greatly reduced if the iterative method converges rapidly. Thus, the main objective of this paper is to determine the conditions under which the SSA is superior to the monolithic algorithm (MA) in terms of computation time. We found that the SSA is superior under all the conditions that we tested, typically requiring only 0.3-50% of the computation time required by the MA. The two methods are indistinguishable in terms of accuracy. Further advantages to the SSA are that it employs a modular code that can easily be modified to accommodate different mathematical representations of the physical phenomena (e.g., different models for reaction kinetics within the stationary medium), and that each module of the code can employ a different numerical algorithm to optimize the solution.
机译:我们比较了两种方法来数值求解多孔介质中反应性质量传输的数学模型,并在流动流体和固定介质之间进行交换。第一种方法称为“整体算法”,是一种方法,在该方法中,控制输运方程的标准有限差分离散化产生在每个时间步都要求解的单个方程组。第二种方法,称为“系统分离算法”,在此首次应用于具有质量交换的运输问题。系统分离算法(SSA)在每个时间步求解两个独立的方程组:一个用于在流动流体中传输,另一个用于在固定介质中吸收和反应。这两个系统在移动-固定接口处通过边界条件耦合,并被迭代求解。与单片算法相比,由于SSA包含两个较小系统的解决方案,因此,如果迭代方法快速收敛,则可以大大减少计算时间。因此,本文的主要目的是确定在计算时间方面SSA优于单片算法(MA)的条件。我们发现,在我们测试的所有条件下,SSA都是优越的,通常仅需要MA的0.3-50%的计算时间。两种方法在准确性方面是无法区分的。 SSA的其他优势在于,它采用了模块化代码,可以轻松地对其进行修改,以适应物理现象的不同数学表示形式(例如,固定介质内反应动力学的不同模型),并且该代码的每个模块都可以采用不同数值算法来优化解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号