...
首页> 外文期刊>Transport in Porous Media >Experimental Investigation and Pore-Scale Modeling Interpretation of Compound-Specific Transverse Dispersion in Porous Media
【24h】

Experimental Investigation and Pore-Scale Modeling Interpretation of Compound-Specific Transverse Dispersion in Porous Media

机译:化合物在多孔介质中横向分散的实验研究和孔尺度模拟解释

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, we performed multitracer laboratory bench-scale experiments and pore-scale simulations in different homogeneous saturated porous media (i.e., different grain sizes) with the objective of (ⅰ) obtaining a generalized parameterization of transverse hydrodynamic dispersion at the continuum Darcy scale; (ⅱ) gaining an improved understanding of the role of basic transport processes (i.e., advection and molecular diffusion) at the subcontinuum scale and their effect on the macroscopic description of transverse mixing in porous media; (ⅲ) quantifying the importance of compound-specific properties such as aqueous diffusivities for transport of different solutes. The results show that a non-linear compounddependent parameterization of transverse hydrodynamic dispersion is required to capture the observed lateral displacement over a wide range of seepage velocities (0.1-35 m/day). With pore-scale simulations, we can prove the hypothesis that the interplay between advective and diffusive mass transfer results in vertical concentration gradients leading to incomplete mixing in the pore channels. We quantify mixing in the pore throats using the concept of fluxrelated dilution index and show that different solutes undergoing transport in a flow-through system with a given average velocity can show different degrees of incomplete mixing. Furthermore, it is this compound-specific incomplete mixing within pores that causes different local transverse (mechanical) dispersion to result at the Darcy scale for high flow velocities. We conclude that physical processes at the microscopic level significantly determine the observed macroscopic behavior and, therefore, should be properly reflected in up-scaled parameterizations of transport processes such as local hydrodynamic dispersion coefficients.
机译:在这项研究中,我们在不同的均质饱和多孔介质(即不同粒度)中进行了多示踪实验室基准规模实验和孔尺度模拟,目的是(ⅰ)获得连续达西尺度上横向流体动力弥散的广义参数化; (ⅱ)更好地了解亚连续谱范围内基本传输过程(即对流和分子扩散)的作用及其对多孔介质中横向混合的宏观描述的影响; (ⅲ)量化化合物特有性质(例如水的扩散性)对不同溶质的运输的重要性。结果表明,需要一个非线性的,依赖于横向流体动力扩散的复合参数化方法,才能在较大的渗透速度范围内(0.1-35 m / day)捕获观测到的横向位移。通过孔隙尺度模拟,我们可以证明以下假设:对流和扩散传质之间的相互作用导致垂直浓度梯度,从而导致孔隙通道中的混合不完全。我们使用与通量相关的稀释指数的概念来量化孔喉中的混合,并显示在给定的平均速度下在流通系统中进行运输的不同溶质会显示出不同程度的不完全混合。此外,正是这种化合物在孔内的不完全混合导致了达西规模上产生不同的局部横向(机械)分散,从而实现了高流速。我们得出的结论是,微观水平上的物理过程显着决定了所观察到的宏观行为,因此,应在运输过程的放大参数化(如局部流体动力扩散系数)中适当反映。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号