...
首页> 外文期刊>Transport in Porous Media >Numerical Simulation of Reactive Fluid Flow on Unstructured Meshes
【24h】

Numerical Simulation of Reactive Fluid Flow on Unstructured Meshes

机译:非结构网格上反应性流体流动的数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Reactive transport simulation on unstructured meshes can provide fundamental insight into the effect that geometric complexity of geologic structures has on fluid flow and development of reaction fronts. When applied to conditions ranging from ambient to hydrothermal and combined with compressible flow, accounting for geometric complexity provides an advantage for applications such as enhanced geothermal systems, carbon dioxide sequestration, hydrothermal ore formation, and radioactive waste disposal. We introduce CSMP-GEMS, a thermo-hydro and chemical multicomponent reactive transport code based on coupling of the Complex System Modeling Platform (CSMP) transport modeling framework with the GEMS3K chemical speciation solver. GEMS3K features a comprehensive suite of non-ideal activity and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions). Current features include transient, compressible, single-phase advective and/or dispersive fluid flow, mass transport, heat transport in saturated porous media, and geochemical reactions in subsurface hydrothermal systems. We present two one-dimensional numerical experiments to compare CSMP-GEMS with the reactive transport codes OpenGeoSys-GEM and TOUGHREACT. Each experiment simulates calcite dissolution and dolomite precipitation during advection and hydrodynamic dispersion. One experiment corresponds to an existing isothermal benchmark; the second explores the applicability of the codes to non-isothermal problems. We also present a two-dimensional example that illustrates the application of CSMP-GEMS on unstructured meshes that can represent complex geologic relations. The results suggest that all three codes are well suited to predicting fluid circulation, heat transport, and mineral stability within hydrothermal systems relevant to enhanced geothermal systems and carbon dioxide sequestration in deep aquifers. Self-consistent accounting for kinetic processes is a major advantage of TOUGHREACT, but published applications are restricted to orthogonal meshes, potentially limiting the applicability of TOUGHREACT to geometrically less complex natural systems. OpenGeoSys-GEM can operate on unstructured meshes that may include multiple element types, facilitating the examination of non-orthogonal domains. However, due to its reliance on the groundwater equations, OpenGeoSys-GEM may be best suited for application to systems in which flow includes dispersion/diffusion and is not compressible. CSMP-GEMS does not currently calculate reaction kinetics, but may be useful for application to geometrically complex systems.
机译:非结构性网格上的反应输运模拟可以提供对地质结构的几何复杂性对流体流动和反应前沿发展的影响的基本认识。当应用于从环境温度到热液范围的条件并与可压缩流结合时,考虑到几何形状的复杂性为诸如增强的地热系统,二氧化碳封存,热液成矿和放射性废物处置等应用提供了优势。我们介绍CSMP-GEMS,这是一种基于复杂系统建模平台(CSMP)传输建模框架与GEMS3K化学形态求解器耦合的热-水和化学多组分反应性传输代码。 GEMS3K具有一套全面的非理想活性和溶液相状态方程模型(水溶液,气体和流体混合物,固溶体)。当前的特征包括瞬态,可压缩,单相对流和/或分散流体流动,传质,饱和多孔介质中的传热以及地下热液系统中的地球化学反应。我们提出了两个一维数值实验,将CSMP-GEMS与反应性运输代码OpenGeoSys-GEM和TOUGHREACT进行了比较。每个实验都模拟了平流和流体动力扩散过程中方解石的溶解和白云石的沉淀。一个实验对应于现有的等温基准。第二部分探讨了代码对非等温问题的适用性。我们还提供了一个二维示例,该示例说明了CSMP-GEMS在可以表示复杂地质关系的非结构化网格上的应用。结果表明,所有这三个规范都非常适合预测与深层含水层中增强的地热系统和二氧化碳封存有关的热液系统中的流体循环,热传输和矿物稳定性。动力学过程的自洽计算是TOUGHREACT的主要优点,但已公开的应用程序仅限于正交网格,这可能将TOUGHREACT的应用范围限制在几何形状较不复杂的自然系统中。 OpenGeoSys-GEM可以在可能包含多种元素类型的非结构化网格上运行,从而便于检查非正交域。但是,由于OpenGeoSys-GEM依赖于​​地下水方程,因此可能最适合应用于流量包含分散/扩散且不可压缩的系统。 CSMP-GEMS当前不计算反应动力学,但可能适用于几何复杂的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号