首页> 外文期刊>Transport in Porous Media >Pore-Scale Numerical Investigation on Chemical Stimulation in Coal and Permeability Enhancement for Coal Seam Gas Production
【24h】

Pore-Scale Numerical Investigation on Chemical Stimulation in Coal and Permeability Enhancement for Coal Seam Gas Production

机译:煤化学增产和增产煤层气渗透率的孔隙度数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

Permeability is a controlling factor for gas migration in coal seam reservoirs and has invariably been the barrier to economically viable gas production in certain deposits. Cleats are the main conduits for gas flow in coal seams though cleat mineralisation is known to significantly reduce permeability. Cleat demineralisation by the use of acids may enhance the effective cleat aperture and therefore permeability. This modelling study examines how acids transport through coal subject to reactive cleat mineralisation, and develops a fundamental understanding of the mechanisms controlling permeability change from pore scale to sample scale. A novel Lattice Boltzmann Method (LBM)-based numerical model for the simulation, prediction, and visualisation of the reaction transport is proposed to numerically investigate relationships between physio-chemical changes and permeability during coal stimulation. In particular, the work studies the interaction of acidic fluids (HCl) with reactive mineral (e. g. calcite) and assumed non-reactive mineral (e. g. coal) surfaces, mineral dissolution and mass transfer, and resultant porosity change. The reaction of a calcite cemented core subplug from the Bandanna Formation of Bowen Basin (Australia), is used as a study case. LBM simulations revealed a permeability enhancement (27.15 times of the pre-flooding permeability) along the x-axis after 20 min HCl flooding of a 5.3 cm x 5.3 cm x 1.3 cm sub-section. The analysis and evaluation of the 4D permeability evolution is conducted as a contribution work for the fluid flow modelling in the subsurface petrophysical conditions, at the micron to centimetre scales. The simulation results demonstrate the proposed algorithm is capable for studies of multiple mineral reactions with disparate reaction rates.
机译:渗透率是煤层储层中天然气运移的控制因素,并且始终是某些矿床经济可行的天然气生产的障碍。割理是煤层中气体流动的主要管道,尽管已知割理矿化会显着降低渗透率。通过使用酸使防滑钉矿化可以提高防滑钉的有效孔径,从而提高渗透性。这项建模研究检查了酸如何在受反应性夹层矿化作用下通过煤运输,并对控制渗透率从孔隙尺度到样品尺度变化的机理有了基本了解。提出了一种基于莱迪思玻尔兹曼方法(LBM)的数值模拟模型,用于反应运移的模拟,预测和可视化,以数值研究煤增产过程中理化变化与渗透率之间的关系。特别地,该工作研究了酸性流体(HCl)与反应性矿物(例如方解石)和假定的非反应性矿物(例如煤)表面的相互作用,矿物的溶解和传质以及由此产生的孔隙度变化。以博恩盆地(澳大利亚)班丹纳组的方解石胶结岩心子塞的反应为研究案例。 LBM模拟显示在5.3 cm x 5.3 cm x 1.3 cm的HCl区域中注入20分钟的HCl后,沿x轴的渗透率增强(是注前渗透率的27.15倍)。 4D渗透性演化的分析和评估是在微米至厘米尺度下对地下岩石物理条件下流体流动建模的一项贡献性工作。仿真结果表明,所提出的算法能够研究具有不同反应速率的多种矿物反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号