...
首页> 外文期刊>Transactions of the ASABE >Lateral Stability of Composite Wood I-Joists Under Concentrated-Load Bending
【24h】

Lateral Stability of Composite Wood I-Joists Under Concentrated-Load Bending

机译:集中荷载作用下复合木工字梁的横向稳定性

获取原文
获取原文并翻译 | 示例

摘要

Three different theoretical beam elastic lateral stability models were combined with the current Load and Resistance Factor Design (LRFD) lateral stability model used for wood I-joist design to identify more accurate predictions of composite wood I-joist buckling behavior. These models were based on Euler, equivalent moment factor (EMF), and Nethercot models. Modifications to account for cross-sectional geometry, load location relative to the cross-section centroid, and lateral bracing were analyzed where applicable within each of the three theoretical models. Material properties of the entire composite wood I-joist cross-section for specimens tested in this research were measured and utilized in the studied lateral stability models. The primary study composite wood I-joists were analyzed in both a cantilevered and simply supported configuration utilizing setups selected to mimic theoretical cases. The results from this analysis were compared to determine the adequacy of the current design effective length equations. The cantilevered composite wood I-joists were tested over nearly the entire range of beam slenderness ratios used in design (R B from 0 to 50). The critical buckling moments (M cr ) recorded from the cantilevered buckling tests were predicted using three lateral stability models. The lateral stability models that provided prediction curves fitting within the 95% confidence interval of the observed cantilevered buckling data were recommended for the lateral stability design of similar composite wood I-joists. Two additional composite wood I-joist types of geometry and flange material different from the primary study I-joists were tested to provide preliminary insight into the robustness of the recommended model for composite wood I-joists. Cantilevered and simply supported beam test configurations yielded similar M cr values for composite wood I-joists of the same type and geometry having equal R B values. Lateral stability models that included the dimensional, bending stiffness, and torsional rigidity properties of the entire composite wood I-joist cross-section yielded far superior M cr predictions than the current LRFD design model. However, the current design approach in the LRFD manual can be made to satisfactorily predict M cr values of composite wood I-joists provided: (1) the I-joist ultimate moment is used; (2) the elastic buckling moment is calculated using either the Euler elastic buckling (EEB) theory or the EMF theory; and (3) the dimensions, flatwise bending stiffness, and torsional rigidity of the entire composite wood I-joist cross-section are used in the calculation of M cr . When utilized with the current LRFD design approach, the EMF theory appeared to be more adaptable than the EEB theory for predicting the critical buckling moment of composite wood I-joists of varying types and geometries
机译:将三种不同的理论梁弹性横向稳定性模型与用于木材工字梁设计的当前载荷和阻力因子设计(LRFD)横向稳定性模型相结合,以确定复合木材工字梁屈曲行为的更准确预测。这些模型基于欧拉,等效矩因子(EMF)和Nethercot模型。在三个理论模型中的每一个中都适用时,分析了对横截面几何形状,相对于横截面质心的载荷位置以及横向支撑的修改。在本研究中测试的标本的整个复合木材工字梁横截面的材料性能均已测量,并用于研究的侧向稳定性模型中。初步研究的复合木材I型托梁采用悬臂梁和简单支撑的结构进行了分析,采用了模拟理论案例的设置。比较了此分析的结果,以确定当前设计有效长度方程的适当性。悬臂式复合木材I型托梁在设计中使用的梁细长比的几乎整个范围内(R B 从0到50)进行了测试。使用三个侧向稳定性模型预测了悬臂屈曲试验记录的临界屈曲矩(M cr )。对于类似复合木材工字梁的横向稳定性设计,推荐使用能提供预测曲线拟合在所观察到的悬臂屈曲数据的95%置信区间内的横向稳定性模型。测试了另外两种与主要研究工字梁不同的几何形状和法兰材料的复合材料工字梁,以初步了解建议的复合材料工字梁模型的坚固性。悬臂梁和简单支撑的梁测试配置对于具有相同的R B 值的相同类型和几何形状的复合木材I型托梁产生了相似的M cr 值。包括整个复合木材工字梁横截面的尺寸,弯曲刚度和抗扭刚度特性的横向稳定性模型产生的M cr 预测要比当前LRFD设计模型优越得多。但是,只要提供以下条件,就可以使LRFD手册中的当前设计方法令人满意地预测复合木I型托梁的M cr 值:(1)使用I型托梁的极限弯矩; (2)使用欧拉弹性屈曲(EEB)理论或EMF理论计算弹性屈曲力矩; (3)在计算M cr 时,使用了整个复合木材I型托梁横截面的尺寸,平面弯曲刚度和抗扭刚度。当与当前的LRFD设计方法一起使用时,EMF理论似乎比EEB理论更适用于预测不同类型和几何形状的复合木工字梁的临界屈曲力矩。

著录项

  • 来源
    《Transactions of the ASABE 》 |2006年第6期| p.1867-1880| 共14页
  • 作者单位

    Jesse R. Burow, ASABE Member Engineer, Engineer in Training, Rigidply Rafters, Inc., Richland, Pennsylvania;

    Harvey B. Manbeck, ASABE Fellow Engineer, Distinguished Professor Emeritus, Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, Pennsylvania;

    and John J. Janowiak, Professor, School of Forest Resources, Pennsylvania State University, University Park, Pennsylvania. Corresponding author: Harvey B. Manbeck, Department of Agricultural and Biological Engineering, 210 Agricultural Engineering Bldg., Pennsylvania State University, University Park, PA 16802;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Beam slenderness ratio; Composite wood I-joist; Critical buckling load; Critical buckling moment; Lateral stability; Residential floors;

    机译:光束细长比;复合木材工字梁;临界屈曲载荷;临界屈曲力矩;横向稳定性;住宅地板;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号