首页> 外文期刊>Transactions of the ASABE >Modeling Thermal Stratification in Fan-Ventilated Greenhouses
【24h】

Modeling Thermal Stratification in Fan-Ventilated Greenhouses

机译:风扇通风温室的热分层建模

获取原文
获取原文并翻译 | 示例
           

摘要

A two-dimensional thermal model was developed to investigate the thermal stratification in fan-ventilated greenhouses. Model inputs include outside weather (air temperature, humidity, and solar radiation), geometric parameters of crop rows and leaf area index, greenhouse ground and roof temperatures, ventilation rate, and operation of evaporative cooling pads. Comparing predictions with observed data indicated that the air temperature and relative humidity were modeled at acceptable accuracies, with air temperature underpredicted by 1.3�C and relative humidity overpredicted by 9%, on average for a planted greenhouse. For an unplanted greenhouse, the air temperature was predicted with an absolute error of 0.7�C, while for relative humidity the absolute error was 3%. Vertical temperature variation, defined as maximum temperature minus minimum temperature at approximately the central location of greenhouse, was predicted with an absolute error of 0.1�C and a relative absolute error of 10% for the planted greenhouse, while for an unplanted greenhouse it was 0.6�C for the absolute error and 12% for the relative absolute error. Simulations with the model suggest that increasing ventilation rate reduced the vertical temperature gradient. Increased ventilation reduced air temperature more at the top than the bottom of the greenhouse. Greater air temperature variation was produced when using evaporative pad cooling than not. Air temperature was reduced more at the bottom than at the top with evaporative pad cooling. The presence of a canopy altered the vertical air temperature distribution and reduced the temperature variation. A sample simulation showed that on a typical summer day at Raleigh, North Carolina, the presence of a canopy row with a height of 1.75 m occupying 69% of the ground area reduced the air temperature variation from 11.5�C to 1.8�C in a fan-ventilated greenhouse operating with a ventilation rate of 0.087 m 3 m -2 s -1 and using evaporative pad cooling. The peak air temperature generally occurred at the top of canopy or somewhat below the canopy top. This finding may have some significance in establishing the location of temperature control sensors in future control systems.
机译:建立了二维热模型以研究风扇通风温室的热分层。模型输入包括外部天气(气温,湿度和太阳辐射),农作物行和叶面积指数的几何参数,温室地面和屋顶温度,通风率以及蒸发式冷却垫的操作。将预测结果与观察到的数据进行比较表明,对于人工种植的温室,平均气温和相对湿度均以可接受的准确度为模型,平均气温低估1.3°C,相对湿度高估9%。对于未种植的温室,预计气温的绝对误差为0.7°C,而对于相对湿度,绝对误差为3%。垂直温度变化被定义为最高温度减去温室中心附近的最低温度,相对于种植温室的绝对误差为0.1°C,相对绝对误差为10%,而对于未经种植的温室,则为0.6 C表示绝对误差,12%表示相对绝对误差。用该模型进行的模拟表明,增加通风量会降低垂直温度梯度。通风的增加使温室顶部的空气温度下降的幅度大于温室底部的温度。使用蒸发垫冷却时,产生的空气温度变化更大。通过蒸发垫冷却,底部的空气温度比顶部的温度降低更多。冠层的存在改变了垂直空气温度分布并减少了温度变化。样本模拟显示,在北卡罗来纳州罗利市的一个典型夏日,高1.75 m的冠层行占地面面积的69%,从而使空气温度从11.5°C降至1.8°C。风扇通风的温室,通风速率为0.087 m 3 m -2 s -1,并使用蒸发垫冷却。最高气温通常发生在冠层顶部或略低于冠层顶部。这一发现对于在将来的控制系统中建立温度控制传感器的位置可能具有重要意义。

著录项

  • 来源
    《Transactions of the ASABE》 |2008年第5期|p.1735-1746|共12页
  • 作者

    S. Li D. H. Willits;

  • 作者单位

    The authors are Shuhai. Li, ASABE Student Member, former Doctoral Student, and Daniel H. Willits, ASABE Member, Professor, Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina. Corresponding author: Daniel H. Willits, 112 Weaver Labs, North Carolina State University, Raleigh, NC 27695-7625: phone: 919-515-6755;

    fax: 919-515-7760;

    e-mail: dan_willits@ncsu.edu.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fan ventilation, Greenhouse, Modeling, Thermal stratification;

    机译:风扇通风;温室;建模;热分层;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号