...
首页> 外文期刊>Topics in Catalysis >Methanol oxidation on Au/TiO2 catalysts
【24h】

Methanol oxidation on Au/TiO2 catalysts

机译:Au / TiO2 催化剂上的甲醇氧化

获取原文
获取原文并翻译 | 示例
           

摘要

We have investigated the adsorption and reaction of methanol with Au/TiO2 catalysts using a pulsed flow reactor, DRIFTS and TPD. The TiO2 (P25) surface adsorbed a full monolayer of methanol, much of it in a dissociative manner, forming methoxy groups associated with the cationic sites, and hydroxyl groups at the anions. The methoxy is relatively stable until 250 °C, at which point decomposition occurs, producing mainly dimethyl ether by a bimolecular surface reaction. As the concentration of methoxy on the surface diminishes, so the mechanism reverts to a de-oxygenation pathway, producing mainly methane and water (at ~330 °C in TPD), but also with some coincident CO and hydrogen. Au catalysts were prepared by the deposition-precipitation method to give Au loadings between 0.5–3 wt %. The effect of low levels of Au on the reactivity is marked. The pathway which gives methane, which is characteristic of titania, remains, but a new feature of the reaction is the evolution of CO2 and H2 at lower temperature (a peak is seen in TPD at 220 °C), and the elimination of the DME-producing state. Clearly this is associated with the presence of Au and appears to be due to the production of a formate species on the surface of the Au component. This formate species is mainly involved in the reaction of methanol with the Au/TiO2 catalysts which results in a combustion pathway being followed, with complete conversion occurring by ~130 °C.
机译:我们使用脉冲流反应器DRIFTS和TPD研究了甲醇在Au / TiO2 催化剂上的吸附和反应。 TiO2 (P25)表面吸附了完整的甲醇单层,其中大部分以解离方式吸附,形成了与阳离子位相关的甲氧基,并在阴离子处形成了羟基。甲氧基在250°C之前相对稳定,此时会发生分解,主要通过双分子表面反应生成二甲醚。由于表面上甲氧基的浓度降低,因此该机理恢复为脱氧途径,主要产生甲烷和水(在TPD中为约330°C),同时还会产生一些同时存在的CO和氢。通过沉积沉淀法制备金催化剂,使金的负载量为0.5-3 wt%。标记了低含量的Au对反应性的影响。产生甲烷的途径仍然存在,甲烷是二氧化钛的特征,但该反应的新特征是在较低温度下CO 2和H 2的逸出(TPD在220°C时出现一个峰值)。 ),并消除DME产生状态。显然,这与Au的存在有关,并且似乎是由于在Au组分的表面上生成了甲酸盐类。该甲酸盐主要参与甲醇与Au / TiO2 催化剂的反应,导致遵循燃烧路径,并在约130°C时发生完全转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号