首页> 外文期刊>Thin-Walled Structures >Nonlinear bifurcation analysis of stiffener profiles via deflation techniques
【24h】

Nonlinear bifurcation analysis of stiffener profiles via deflation techniques

机译:通过放气技术对加强筋轮廓进行非线性分叉分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

When loading experiments are repeated on different samples, qualitatively different results can occur. This is due to factors such as geometric imperfections, load asymmetries, unevenly stressed regions or uneven material distributions created by manufacturing processes. This fact makes designing robust thin-walled structures difficult. One numerical strategy for exploring these different possible responses is to impose various initial imperfections on the geometry before loading, leading to different final solutions. However, this strategy is tedious, error-prone and gives an incomplete picture of the possible buckled configurations of the system.The present study demonstrates how a deflation strategy can be applied to obtain multiple solutions for the more robust design of thin-walled structures under displacement controlled uniaxial compression. We first demonstrate that distinct initial imperfections trigger different sequences of instability events in the Saint Venant-Kirchhoff hyperelastic model. We then employ deflation to investigate multiple bifurcation paths without the use of initial imperfections. A key advantage of this approach is that it can capture disconnected branches that cannot easily be discovered by conventional arc-length continuation and branch switching algorithms. Numerical experiments are given for three types of aircraft stiffener profiles. Our proposed technique is shown to be a powerful tool for exploring multiple disconnected bifurcation paths without requiring detailed insight for designing initial imperfections. We hypothesise that this technique will be very useful in the design process of robust thin-walled structures that must consider a variety of bifurcation paths.
机译:当在不同的样品上重复加载实验时,可能会发生质上不同的结果。这是由于诸如几何缺陷,负载不对称,受力区域不均匀或制造过程中产生的材料分布不均匀等因素引起的。这个事实使得设计坚固的薄壁结构变得困难。探索这些不同可能响应的一种数值策略是在加载之前在几何图形上施加各种初始缺陷,从而导致不同的最终解决方案。但是,这种策略很繁琐,容易出错,并且无法完整显示系统可能发生的弯曲配置。本研究表明了如何采用放气策略来获得多种解决方案,以使薄壁结构在以下条件下更可靠地设计位移控制的单轴压缩。我们首先证明了不同的初始缺陷会在Saint Venant-Kirchhoff超弹性模型中触发不同的失稳事件序列。然后,我们使用放气来研究多个分叉路径,而无需使用初始缺陷。这种方法的主要优势在于,它可以捕获传统弧长连续和分支切换算法无法轻易发现的断开分支。给出了三种类型的飞机加固件轮廓的数值实验。我们提出的技术显示出是探索多个不连续分叉路径的强大工具,而无需详细了解初始缺陷的设计。我们假设,该技术在必须考虑各种分叉路径的坚固薄壁结构的设计过程中将非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号