...
首页> 外文期刊>Thin Solid Films >Microstructure and mechanical strength of snag-based solid liquid inter-diffusion bonds for 3 dimensional integrated circuits
【24h】

Microstructure and mechanical strength of snag-based solid liquid inter-diffusion bonds for 3 dimensional integrated circuits

机译:用于3维集成电路的纳米颗粒固溶互扩散键的微观结构和机械强度

获取原文
获取原文并翻译 | 示例
           

摘要

Solid liquid inter-diffusion is a bonding technology that has been proposed at microscale for fabrication of ultrafine interconnects in high density and 3 dimensional integrated circuit packages. Due to very small size, bonds that are formed using this technology are very susceptible to process variations and thus reliability and quality of the bonds may deteriorate by small variations in the process. This study examines the effect of process parameters; temperature, bonding time, and pressure on the bond strength, microstructure, and intermetallic formation at the bonds. A full factorial experiment is designed and implemented on the process. Bonds are characterized using a micro-tester for mechanical strength and ductility. The microstructure of bonds formed under different process conditions are explored using scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction pattern to determine the bond thickness, elemental composition, copper concentration, and extent of copper diffusion and intermetallic compound. 1-dimensional phase lag modeling technique was used to estimate the time required for complete bond transformation to intermetallics. Results of these analyses show that temperature plays the strongest role in intermetallics formation and thickness. Bonds formed at higher temperatures and longer bonding time behaved more brittle and had higher strength. Pressure does not show a significant effect, and bonds that are formed under higher pressure show a slight reduction in bond strength with the same brittle behavior. This reduction is associated with formation of e phase of intermetallic and the lower strength between e and η phase. Modeling intermetallics formation for different bond thicknesses show that smaller bond thickness does not translate into much shorter time for complete transformation to intermetallics.
机译:固液互扩散是一种结合技术,已在微观规模上提出,用于制造高密度和3维集成电路封装中的超细互连。由于尺寸非常小,使用此技术形成的键很容易受到工艺变化的影响,因此,键的可靠性和质量可能会因工艺中的微小变化而降低。这项研究考察了工艺参数的影响。温度,粘结时间和压力对粘结强度,微观结构和粘结处的金属间形成的影响。在该过程中设计并实施了完整的阶乘实验。使用微型测试仪对粘结进行机械强度和延展性表征。使用扫描电子显微镜,能量色散X射线光谱法和X射线衍射图谱探索在不同工艺条件下形成的键的微观结构,以确定键的厚度,元素组成,铜浓度以及铜扩散和金属间化合物的程度。一维相位滞后建模技术用于估计将键完全转换为金属间化合物所需的时间。这些分析的结果表明,温度在金属间化合物的形成和厚度中起着最重要的作用。在较高的温度和较长的粘合时间下形成的粘合层表现得更脆并且具有更高的强度。压力没有显示出显着的影响,在相同的脆性下,在较高压力下形成的粘结表现出粘结强度的轻微降低。这种减少与金属间化合物e相的形成以及e相与η相之间较低的强度有关。对不同键合厚度的金属间化合物形成模型表明,较小的键合厚度并不能转化为更短的时间以完全转化为金属间化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号