首页> 外文期刊>Thin Solid Films >Photoluminescence quenching of green synthesized manganese doped zinc oxide by sodium iodide doped Polypyrrole polymer
【24h】

Photoluminescence quenching of green synthesized manganese doped zinc oxide by sodium iodide doped Polypyrrole polymer

机译:碘化钠掺杂聚吡咯聚合物对绿色合成锰掺杂氧化锌的光致发光猝灭。

获取原文
获取原文并翻译 | 示例
       

摘要

Nanocrystalline ZnO particles doped with Manganese(Mn) were prepared by a green synthesis method using cucum sativa fruit pulp extract as biosolvent. Different concentration of Mn(II) was incorporated in ZnO to study the dopant effect in ZnO. The X-ray diffraction pattern data shows a decrease in grain size for Mn-ZnO from 46 nm to 31 nm with the increase in Mn concentration. Scanning electron microscopy reveals spherical morphology with a decrease in particle size while increasing the dopant concentration. With an increase in Mn doping the band gap is observed to reduce from 3.14 eV to 3.01 eV which is due to band tailing effect. The luminescence of ZnO is quenched by increasing the dopant ions concentration which might be attributed to the quenching ability of Mn ions in the ZnO lattice. While 5% Mn doped ZnO (MZO) showed improved crystallinity, enhanced optical property and reduced particle size, we have chosen this concentration for thin film fabrication using Dip coating unit. At the same time, sodium iodide(NaI) doped Polypyrrole(PPy) powder synthesized by the chemical polymerization method exhibited a band gap of 2.57 eV. As the bandgap of NaI doped PPy falls in the higher range of visible region, it was taken further to make nanocomposite thin film by dip coating with 5% MZO nanoparticles. The photoluminescence intensity of the MZO-NaI PPy nanocomposite thin film got reduced drastically suggesting better electron-hole separation efficiency at the interface of MZO-NaI PPy nanocomposite thin film. Due to the improved electron-hole separation efficiency of the synthesized nanocomposite, it might find a possible application in the hybrid solar cell.
机译:采用绿色合成方法,以黄瓜果实浆粕提取物为生物溶剂,制备了锰(Mn)掺杂的纳米ZnO颗粒。 ZnO中掺入了不同浓度的Mn(II),以研究ZnO中的掺杂效应。 X射线衍射图数据显示,随着Mn浓度的增加,Mn-ZnO的晶粒尺寸从46nm减小至31nm。扫描电子显微镜显示球形形态,其粒径减小,同时掺杂剂浓度增加。随着Mn掺杂的增加,观察到带隙从3.14eV减小到3.01eV,这是由于带拖尾效应引起的。 ZnO的发光通过增加掺杂剂离子的浓度来淬灭,这可能归因于ZnO晶格中Mn离子的淬灭能力。虽然5%Mn掺杂的ZnO(MZO)表现出改善的结晶度,增强的光学性能和减小的粒度,但我们选择此浓度用于使用浸涂单元的薄膜制造。同时,通过化学聚合法合成的碘化钠(NaI)掺杂的聚吡咯(PPy)粉末的带隙为2.57eV。由于NaI掺杂的PPy的带隙落在可见光区域的较高范围内,因此需要进一步采用5%MZO纳米颗粒浸涂来制备纳米复合薄膜。 MZO-NaI PPy纳米复合薄膜的光致发光强度大大降低,表明在MZO-NaI PPy纳米复合薄膜的界面处电子空穴分离效率更高。由于合成的纳米复合材料的改进的电子-空穴分离效率,它可能在混合太阳能电池中找到可能的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号