首页> 外文期刊>Thermal science >NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID: EFFECT OF TYPE AND MODEL OF NANOFLUID
【24h】

NUMERICAL STUDY OF MIXED CONVECTION HEAT TRANSFER IN LID-DRIVEN CAVITY UTILIZING NANOFLUID: EFFECT OF TYPE AND MODEL OF NANOFLUID

机译:利用纳米流体的潜流腔内混合对流换热的数值研究:纳米流体的类型和模型的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical investigation of the laminar mixed convection in two-dimensional lid driven cavity filled with water-Al2O3, water-Cu or water-TiO2 nanofluids is done in this work. In the present study, the top and bottom horizontal walls are thermally insulated while the vertical walls are kept at constant but different temperatures. The governing equations are given in term of the stream function-vorticity formulation in the non-dimensionalized form and then solved numerically by second-order central difference scheme. The thermal conductivity and effective viscosity of nanofluid have been calculated by Maxwell-Garnett and Brinkman models, respectively. An excellent agreement between the current work and previously published data on the basis of special cases are found. The governing parameters are Rayleigh number 103 ≤ Ra ≤ 106 and solid concentration 0 ≤ φ ≤0.2 at constant Reynolds and Prandtl numbers. An increase in mean Nusselt number is found as the volume fraction of nanoparticles increases for the whole range of Rayleigh numbers. In addition, it is found that significant heat transfer enhancement can be obtained by increasing thermal conductivity coefficient of additive particles. At Ra=1.75×105, the Nusselt number increases by about 21% for TiO2-Water, and almost 25% for Al2O3-Water, and finally around 40% for Cu-Water nanofluid. Therefore, the highest values are obtained when using Cu nanoparticles. The result obtained using variable thermal conductivity and variable viscosity models are also compared to the results acquired by the Maxwell-Garnett and the Brinkman model.
机译:在这项工作中,对充满水-Al2O3,水-Cu或水-TiO2纳米流体的二维盖驱动腔中的层流混合对流进行了数值研究。在本研究中,顶部和底部水平墙是隔热的,而垂直墙则保持恒定但温度不同。控制方程根据流函数涡度公式以无量纲形式给出,然后通过二阶中心差分方案进行数值求解。纳米流体的导热系数和有效粘度分别通过Maxwell-Garnett和Brinkman模型进行了计算。在特殊情况的基础上,目前的工作与先前发表的数据之间达成了极好的协议。在恒定的雷诺数和普朗特数下,控制参数为瑞利数103≤Ra≤106和固体浓度0≤φ≤0.2。随着整个瑞利数范围内纳米粒子的体积分数增加,平均努塞尔数增加。另外,发现可以通过增加添加剂颗粒的导热系数来获得显着的传热增强。在Ra = 1.75×105时,TiO2-水的Nusselt值增加约21%,Al2O3-水的Nusselt值增加近25%,最后Cu-水纳米流体的Nusselt值增加约40%。因此,当使用Cu纳米颗粒时获得最高值。还使用可变导热系数和可变粘度模型获得的结果与Maxwell-Garnett和Brinkman模型获得的结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号