...
首页> 外文期刊>Theory of computing systems >On Slepian-Wolf Theorem with Interaction
【24h】

On Slepian-Wolf Theorem with Interaction

机译:关于互作用的Slepian-Wolf定理

获取原文
获取原文并翻译 | 示例

摘要

Abstract In this paper we study interactive “one-shot” analogues of the classical Slepian–Wolf theorem. Alice receives a value of a random variable X , Bob receives a value of another random variable Y that is jointly distributed with X . Alice’s goal is to transmit X to Bob (with some error probability ε ). Instead of one-way transmission we allow them to interact. They may also use shared randomness. We show, that for every natural r Alice can transmit X to Bob using 1 + 1 r H ( X | Y ) + r + O ( log 2 1 ε ) $left (1 + frac {1}{r}right )H(X|Y) + r + O(log _{2}left (frac {1}{varepsilon }right ))$ bits on average in 2 H ( X | Y ) r + 2 $frac {2H(X|Y)}{r} + 2$ rounds on average. Setting r = ⌈ H ( X | Y ) ⌉ $r = lceil sqrt {H(X|Y)}rceil $ and using a result of Braverman and Garg (2) we conclude that every one-round protocol π with information complexity I can be compressed to a (many-round) protocol with expected communication about I + 2 I $I + 2sqrt {I}$ bits. This improves a result by Braverman and Rao (3), where they had I + 5 I $I+5sqrt {I}$ . Further, we show (by setting r = ⌈ H ( X | Y )⌉) how to solve this problem (transmitting X ) using 2 H ( X | Y ) + O ( log 2 1 ε ) $2H(X|Y) + O(log _{2}left (frac {1}{varepsilon }right ))$ bits and 4 rounds on average. This improves a result of Brody et al. (4), where they had 4 H ( X | Y ) + O ( log 1 / ε ) $4H(X|Y) + O(log 1/varepsilon )$ bits and 10 rounds on average. In the end of the paper we discuss how many bits Alice and Bob may need to communicate on average besides H ( X | Y ). The main question is whether the upper bounds mentioned above are tight. We provide an example of ( X , Y ), such that transmission of X from Alice to Bob with error probability ε requires H ( X | Y ) + Ω log 2 1 ε $H(X|Y) + {Omega }left (log _{2}left (frac {1}{varepsilon }right )right )$ bits on average.
机译:摘要在本文中,我们研究了经典Slepian-Wolf定理的交互式“一次性”类似物。爱丽丝(Alice)接收一个随机变量X的值,鲍勃(Bob)接收另一个与X共同分布的随机变量Y的值。爱丽丝的目标是将X传输给鲍勃(误差概率为ε)。除了单向传输,我们允许它们进行交互。他们还可以使用共享随机性。我们证明,对于每个自然r,爱丽丝都可以使用1 + 1 r H(X | Y)+ r + O(log 2 1ε)$ left(1 + frac {1} {r} right)H将X传输给Bob (X | Y)+ r + O(log _ {2} left(frac {1} {varepsilon} right))$平均2 H(X | Y)r + 2 $ frac {2H(X | Y )} {r}平均+ 2 $个回合。设置r =⌈H(X | Y)⌉$ r = lceil sqrt {H(X | Y)} rceil $并使用Braverman和Garg(2)的结果,我们得出结论,每个具有信息复杂性I的单轮协议π可以压缩为一个(多轮)协议,并具有有关I + 2 I $ I + 2sqrt {I} $位的预期通信。这改善了Braverman和Rao(3)的结果,他们的I + 5 I $ I + 5sqrt {I} $。此外,我们展示(通过设置r =⌈H(X | Y)⌉)如何使用2 H(X | Y)+ O(log 2 1ε)$ 2H(X | Y)解决此问题(传输X) + O(log _ {2}左(frac {1} {varepsilon} right))$位,平均4个回合。这改善了Brody等人的结果。 (4),他们有4个H(X | Y)+ O(log 1 /ε)$ 4H(X | Y)+ O(log 1 / varepsilon)$位,平均10个回合。在本文的最后,我们讨论了除了H(X | Y)以外,Alice和Bob平均还需要通信多少位。主要问题是上述上限是否严格。我们提供了(X,Y)的示例,使得X以错误概率ε从Alice传输到Bob的过程需要H(X | Y)+Ωlog 2 1ε$ H(X | Y)+ {Omega} left(平均log_ {2} left(frac {1} {varepsilon} right)right)$位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号