...
首页> 外文期刊>Theoretical and applied climatology >Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation
【24h】

Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation

机译:关于里海海平面变化的气候反馈的量化以及里海对大规模大气环流的影响

获取原文
获取原文并翻译 | 示例

摘要

With a fall of the Caspian Sea level (CSL), its size gets smaller and therefore the total evaporation over the sea is reduced. With a reduced evaporation from the sea, the fall of the CSL is weakened. This creates a negative feedback as less evaporation leads to less water losses of the Caspian Sea (CS). On the other hand, less evaporation reduces the water in the atmosphere, which may lead to less precipitation in the catchment area of the CS. The two opposite feedbacks are estimated by using an atmospheric climate model coupled with an ocean model only for the CS with different CS sizes while keeping all other forcings like oceanic sea surface temperatures (SSTs) and leaf area index the same from a global climate simulation. The investigation is concentrated on the medieval period because at that time the CSL changed dramatically from about -30 to -19m below the mean ocean sea level, partly man-made. Models used for simulating the last millennium are not able to change the size of the CS dynamically so far. When results from such simulations are used to investigate the CSL variability and its causes, the present study should help to parameterize its feedbacks.A first assumption that the total evaporation from the CS will vary with the size of the CS (number of grid points representing the sea) is generally confirmed with the model simulations. The decrease of grid points from 15 to 14, 10, 8 or 7 leads to a decrease of evaporation to 96, 77, 70 and 54%. The lower decrease than initially expected from the number of grid points (93, 67, 53 and 47%) is probably due to the fact that there would also be some evaporation at grid points that run dry with a lower CSL but a cooling of the CS SST with increasing CS size in summer may be more important. The reduction of evaporation over the CS means more water for the budget of the whole catchment of the CS (an increase of the CSL) but from the gain through reduced evaporation over the CS, only 70% is found to remain in the water budget of the whole catchment area due to feedbacks with the precipitation. This suggests a high proportion of recycling of water within the CS catchment area.When using a model which does not have a correct CS size, the effect of a reduced CS area on the water budget for the whole CS catchment can be estimated by taking the evaporation over the sea multiplied by the proportional changed area. However, only 50% of that change is ending up in the water balance of the total catchment of the CS. A formula is provided. This method has been applied to estimate the CSL during the Last Glacial Maximum to be at -30 to -33m.The experiments show as well that the CS has an impact on the large-scale atmospheric circulation with a widened Aleutian 500hPa height field trough with increasing CS sizes. It is possible to validate this aspect with observational data.
机译:随着里海海平面(CSL)的下降,其尺寸会变小,因此减少了海上的总蒸发量。随着海洋蒸发量的减少,CSL的跌落被减弱。这产生了负反馈,因为更少的蒸发导致里海(CS)的水分减少。另一方面,较少的蒸发减少了大气中的水,这可能导致CS的集水区中的降水减少。通过使用大气气候模型和海洋模型(仅针对具有不同CS尺寸的CS),同时使所有其他强迫(如海洋海表温度(SST)和叶面积指数)与全球气候模拟相同,可以估算出两个相反的反馈。该调查集中在中世纪时期,因为当时CSL的变化从平均海洋海平面以下约-30m变为-19m,部分是人为造成的。到目前为止,用于模拟上一个千年的模型尚不能动态更改CS的大小。当使用这些模拟的结果调查CSL的变异性及其成因时,本研究应有助于对其反馈进行参数化。第一个假设是CS的总蒸发量将随CS的大小而变化(网格点数代表通常通过模型仿真来确认。网格点从15减少到14、10、8或7导致蒸发减少到96%,77%,70%和54%。网格点数减少的数量(93、67、53和47%)比最初预期的要低,可能是由于以下事实:在网格点干了但CSL较低但冷却后的网格点上也有一些蒸发随着夏季CS尺寸的增加,CS SST可能更为重要。 CS上的蒸发量减少意味着CS整个集水区的预算中有更多的水(CSL的增加),但是通过减少CS上的蒸发量而获得的收益中,仅70%的水量仍被保留。由于降水的反馈,整个集水区。这表明CS汇水区域内的水回收比例很高。当使用没有正确CS尺寸的模型时,可以通过以下方法估算CS面积减少对整个CS流域水预算的影响:海上蒸发乘以比例变化面积。但是,只有50%的变化最终出现在CS的总集水区的水平衡中。提供了一个公式。该方法已被用于估算上一次冰期最大时的CSL在-30至-33m范围内。实验还表明,CS对Aleutian 500hPa高度场波谷加宽的大型大气环流有影响。 CS尺寸增加。可以用观测数据验证这一方面。

著录项

  • 来源
    《Theoretical and applied climatology 》 |2019年第2期| 475-488| 共14页
  • 作者单位

    Max Planck Inst Meteorol, Hamburg, Germany;

    Natl Chung Hsing Univ, IDCSA, Dept Environm Engn, Taichung, Taiwan;

    Natl Taiwan Univ, Inst Oceanog, Taipei, Taiwan;

    Natl Chung Hsing Univ, IDCSA, Dept Environm Engn, Taichung, Taiwan;

    Aix Marseille Univ, Coll France, Technopole Environm Arbois Mediterranee, CEREGE,CNRS,IRD, Aix En Provence, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号