...
首页> 外文期刊>Theoretical and Applied Genetics >Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply
【24h】

Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply

机译:磷供应差异下玉米(Zea mays L.)侧根分枝和长度的QTL定位

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low phosphorus availability is a primary constraint for plant growth in terrestrial ecosystems. Lateral root initiation and elongation may play an important role in the uptake of immobile nutrients such as phosphorus by increasing soil exploration and phosphorus acquisition. The objective of this study was to identify quantitative trait loci (QTLs) controlling lateral root length (LRL), number (LRN), and plasticity of the primary seedling root of maize under varying phosphorus availability. Using a cigar roll culture in a controlled environment, we evaluated primary root LRL and LRN at low and high phosphorus availability in 160 recombinant inbred lines (RILs) derived from a cross between maize genotypes B73 and Mo17, which have contrasting adaptation to low phosphorus availability in the field. Low phosphorus availability increased LRL by 19% in Mo17, the phosphorus-efficient parent, but significantly decreased LRL in B73, the phosphorus-inefficient genotype. Substantial genetic variation and transgressive segregation for LRL and LRN existed in the population. The plasticity of LRL ranged from −100% to 146.3%, with a mean of 30.4%, and the plasticity of LRN ranged from −82.2% to 164.1%, with a mean of 18.5%. On the basis of composite interval mapping with a LOD threshold of 3.27, one QTL was associated with LRN plasticity, five QTLs were associated with LRL and one QTL was associated with LRN under high fertility. Under low fertility, six QTLs were associated with LRL and one QTL with LRN. No QTLs were detected for plasticity of LRL. A number of RILs exceeded Mo17, the phosphorus-efficient parent, for LRL, LRN, and plasticity. The detection of QTLs for these traits, in combination with the observation of transgressive segregants in our population, indicates that favorable alleles can be combined to increase seedling lateral root growth in maize.
机译:磷的低利用率是陆地生态系统植物生长的主要限制因素。通过增加对土壤的探测和磷的吸收,侧根的萌生和伸长可能在吸收不动的养分(如磷)中起重要作用。这项研究的目的是确定控制不同磷素利用率的玉米侧生根长(LRL),数量(LRN)和可塑性的定量性状基因座(QTL)。在受控环境中使用雪茄卷筒培养,我们评估了来自玉米基因型B73和Mo17之间杂交的160个重组近交系(RIL)在低磷和高磷可用性下的初生根LRL和LRN,这与低磷可用性具有相反的适应性在该领域。低磷可利用性使低磷亲本Mo17的LRL增加19%,但显着降低低磷基因型B73的LRL。 LRL和LRN存在大量的遗传变异和海侵分离。 LRL的可塑性范围为-100%至146.3%,平均值为30.4%,LRN的可塑性范围为-82.2%至164.1%,平均值为18.5%。根据LOD阈值为3.27的复合区间作图,在高生育力下,一个QTL与LRN可塑性相关,五个QTL与LRL相关,一个QTL与LRN相关。在低生育率下,六个QTL与LRL相关,一个QTL与LRN相关。没有检测到LTL可塑性的QTL。许多RIL的LRL,LRN和可塑性超过了磷有效母体Mo17。对这些性状的QTL的检测,结合对我们种群中海侵性分离物的观察,表明可以结合有利的等位基因以增加玉米幼苗侧根的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号