首页> 外文期刊>Theoretical and Applied Genetics >A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments
【24h】

A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments

机译:中国春×SQ1交配的六倍体小麦(Triticum aestivum L.)的高密度遗传图谱及其在各种环境下比较谷物产量的QTL的用途

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A population of 96 doubled haploid lines (DHLs) was prepared from F1 plants of the hexaploid wheat cross Chinese Spring × SQ1 (a high abscisic acid-expressing breeding line) and was mapped with 567 RFLP, AFLP, SSR, morphological and biochemical markers covering all 21 chromosomes, with a total map length of 3,522 cM. Although the map lengths for each genome were very similar, the D genome had only half the markers of the other two genomes. The map was used to identify quantitative trait loci (QTLs) for yield and yield components from a combination of 24 site × treatment × year combinations, including nutrient stress, drought stress and salt stress treatments. Although yield QTLs were widely distributed around the genome, 17 clusters of yield QTLs from five or more trials were identified: two on group 1 chromosomes, one each on group 2 and group 3, five on group 4, four on group 5, one on group 6 and three on group 7. The strongest yield QTL effects were on chromosomes 7AL and 7BL, due mainly to variation in grain numbers per ear. Three of the yield QTL clusters were largely site-specific, while four clusters were largely associated with one or other of the stress treatments. Three of the yield QTL clusters were coincident with the dwarfing gene Rht-B1 on 4BS and with the vernalisation genes Vrn-A1 on 5AL and Vrn-D1 on 5DL. Yields of each DHL were calculated for trial mean yields of 6 g plant−1 and 2 g plant−1 (equivalent to about 8 t ha−1 and 2.5 t ha−1, respectively), representing optimum and moderately stressed conditions. Analyses of these yield estimates using interval mapping confirmed the group-7 effects on yield and, at 2 g plant−1, identified two additional major yield QTLs on chromosomes 1D and 5A. Many of the yield QTL clusters corresponded with QTLs already reported in wheat and, on the basis of comparative genetics, also in rice. The implications of these results for improving wheat yield stability are discussed.
机译:从六倍体小麦春交×SQ1(高脱落酸表达选育系)的F1 植物中制备了96个双单倍体系(DHLs),并用567 RFLP,AFLP,SSR,形态学作图以及涵盖所有21条染色体的生化标记,总图长为3,522 cM。尽管每个基因组的图谱长度非常相似,但D基因组仅具有其他两个基因组标记的一半。该图用于从24个位点×处理×年组合(包括营养胁迫,干旱胁迫和盐胁迫处理)的组合中识别产量和产量成分的数量性状基因座(QTL)。尽管产量QTL在基因组周围广泛分布,但从五个或更多试验中鉴定出17个产量QTL簇:第1组染色体上有两个,第2组和第3组各一个,第4组五个,第5组四个,第一个。第6组和第3组分别是第3组和第7组。第3组最强的产量QTL影响在7AL和7BL染色体上,这主要是由于每只耳朵的粒数变化所致。产量QTL群集中的三个群集在很大程度上是针对特定地点的,而四个群集在很大程度上与一种或多种胁迫处理相关。三个产量QTL簇与4BS上的矮化基因Rht-B1和5AL上的春化基因Vrn-A1和5DL上的春化基因一致。计算出每个DHL的产量,分别为6 g plant-1 和2 g plant-1 (相当于约8 t ha-1 和2.5 t ha-1 < / sup>)分别代表最佳和中等压力条件。使用间隔作图对这些产量估算值进行的分析证实了第7组对产量的影响,并且在2 g plant-1 下,在1D和5A染色体上发现了另外两个主要产量QTL。许多产量QTL簇与小麦中已经报道的QTL相符,根据比较遗传学,水稻也已经报道。讨论了这些结果对改善小麦产量稳定性的意义。

著录项

  • 来源
    《Theoretical and Applied Genetics》 |2005年第5期|865-880|共16页
  • 作者单位

    John Innes Centre Norwich Research Park;

    John Innes Centre Norwich Research Park;

    John Innes Centre Norwich Research Park;

    John Innes Centre Norwich Research Park;

    John Innes Centre Norwich Research Park;

    John Innes Centre Norwich Research Park;

    John Innes Centre Norwich Research Park;

    John Innes Centre Norwich Research Park;

    John Innes Centre Norwich Research Park;

    SAATEN-UNION Resistenzlabor GmbH;

    SAATEN-UNION Resistenzlabor GmbH;

    CPI Division Rothamsted Research;

    IACR-Long Ashton Research Station University of Bristol;

    IACR-Long Ashton Research Station University of Bristol;

    IACR-Long Ashton Research Station University of Bristol;

    Kazak Institute of Agriculture;

    Kazak Institute of Agriculture;

    Institute of Plant Physiology Genetics and Bioengineering National Biotechnology Center;

    Institute of Plant Physiology Genetics and Bioengineering National Biotechnology Center;

    Biotechnology Applied to Plant Breeding Department of Agroenvironmental Sciences and Technology;

    Biotechnology Applied to Plant Breeding Department of Agroenvironmental Sciences and Technology;

    Centre for Arid Zone Studies University of Wales;

    Unidad de Suelos y Riegos Servicio de Investigación Agroalimentaria Gobierno de Aragón (SIA-DGA);

    Unidad de Suelos y Riegos Servicio de Investigación Agroalimentaria Gobierno de Aragón (SIA-DGA);

    John Innes Centre Norwich Research ParkAgricultural Research Institute-Serbia Centre for Agricultural and Technological Research (CATR);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号