首页> 外文期刊>Theoretical and Applied Genetics >Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture
【24h】

Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture

机译:玉米雄穗花序结构表型性状和主要成分的数量性状基因座分析

获取原文
获取原文并翻译 | 示例
           

摘要

Maize tassel inflorescence architecture is relevant to efficient production of F1 seed and yield performance of F1 hybrids. The objectives of this study were to identify genetic relationships among seven measured tassel inflorescence architecture traits and six calculated traits in a maize backcross population derived from two lines with differing tassel architectures, and identify Quantitative Trait Loci (QTL) involved in the inheritance of those tassel inflorescence architecture traits. A Principal Component (PC) analysis was performed to examine relationships among correlated traits. Traits with high loadings for PC1 were branch number and branch number density, for PC2 were spikelet density on central spike and primary branch, and for PC3 were lengths of tassel and central spike. We detected 45 QTL for individual architecture traits and eight QTL for the three PCs. For control of inflorescence architecture, important QTL were found in bins 7.02 and 9.02. The interval phi034—ramosa1 (ral) in bin 7.02 was associated with six individual architecture trait QTL and explained the largest amount of phenotypic variation (17.3%) for PC1. Interval bnlg344–phi027 in bin 9.02 explained the largest amount of phenotypic variation (14.6%) for PC2. Inflorescence architecture QTL were detected in regions with candidate genes fasciated ear2, thick tassel dwarf1, and ral. However, the vast majority of QTL mapped to regions without known candidate genes, indicating positional cloning efforts will be necessary to identify these genes.
机译:玉米穗花序结构与F1 种子的高效生产和F1 杂种的产量表现有关。这项研究的目的是要确定玉米回交种群中七个测量的穗花序结构性状与六个计算出的性状之间的遗传关系,这些玉米回交种群源于具有不同穗结构的两条品系,并鉴定参与这些穗遗传的数量性状位点(QTL)花序结构特征。进行了主成分(PC)分析以检查相关性状之间的关系。 PC1高负荷的性状是分支数和分支数密度,PC2是中央穗状体和初级分支上的小穗密度,而PC3是流苏和中央穗状体的长度。我们针对单个架构特征检测了45个QTL,为三台PC检测了八个QTL。为了控制花序结构,在7.02和9.02箱中发现了重要的QTL。 bin 7.02中的间隔phi034-ramosa1(ral)与六个单独的结构特征QTL相关,并解释了PC1的最大表型变异量(17.3%)。区间9.02中的间隔bnlg344–phi027解释了PC2的最大表型变异(14.6%)。在带有候选基因的区域中检测到花序结构QTL,这些候选基因为ear2,浓密的流苏dwarf1和ral。但是,绝大多数QTL定位到没有已知候选基因的区域,这表明需要定位克隆才能鉴定这些基因。

著录项

  • 来源
    《Theoretical and Applied Genetics》 |2006年第8期|1395-1407|共13页
  • 作者单位

    Department of Crop Sciences University of Illinois;

    Department of Crop Sciences University of Illinois;

    Department of Crop Sciences University of Illinois;

    Department of Crop Sciences University of Illinois;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号