首页> 外文期刊>Theoretical and Applied Genetics >Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods
【24h】

Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods

机译:使用因子回归和偏最小二乘方法绘制CIMMYT玉米干旱胁迫程序的QTL和QTL×环境相互作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The study of QTL × environment interaction (QEI) is important for understanding genotype × environment interaction (GEI) in many quantitative traits. For modeling GEI and QEI, factorial regression (FR) models form a powerful class of models. In FR models, covariables (contrasts) defined on the levels of the genotypic and/or environmental factor(s) are used to describe main effects and interactions. In FR models for QTL expression, considerable numbers of genotypic covariables can occur as for each putative QTL an additional covariable needs to be introduced. For large numbers of genotypic and/or environmental covariables, least square estimation breaks down and partial least squares (PLS) estimation procedures become an attractive alternative. In this paper we develop methodology for analyzing QEI by FR for estimating effects and locations of QTLs and QEI and interpreting QEI in terms of environmental variables. A randomization test for the main effects of QTLs and QEI is presented. A population of F2 derived F3 families was evaluated in eight environments differing in drought stress and soil nitrogen content and the traits yield and anthesis silking interval (ASI) were measured. For grain yield, chromosomes 1 and 10 showed significant QEI, whereas in chromosomes 3 and 8 only main effect QTLs were observed. For ASI, QTL main effects were observed on chromosomes 1, 2, 6, 8, and 10, whereas QEI was observed only on chromosome 8. The assessment of the QEI at chromosome 1 for grain yield showed that the QTL main effect explained 35.8% of the QTL + QEI variability, while QEI explained 64.2%. Minimum temperature during flowering time explained 77.6% of the QEI. The QEI analysis at chromosome 10 showed that the QTL main effect explained 59.8% of the QTL + QEI variability, while QEI explained 40.2%. Maximum temperature during flowering time explained 23.8% of the QEI. Results of this study show the possibilities of using FR for mapping QTL and for dissecting QEI in terms of environmental variables. PLS regression is efficient in accounting for background noise produced by other QTLs.
机译:QTL×环境相互作用(QEI)的研究对于理解许多数量性状的基因型×环境相互作用(GEI)具有重要意义。对于GEI和QEI建模,阶乘回归(FR)模型构成了一类强大的模型。在FR模型中,在基因型和/或环境因子水平上定义的协变量(对比度)用于描述主要作用和相互作用。在用于QTL表达的FR模型中,可能会出现大量的基因型协变量,因为对于每个推定的QTL,都需要引入其他协变量。对于大量的基因型和/或环境协变量,最小二乘估计会崩溃,偏最小二乘(PLS)估计程序将成为有吸引力的选择。在本文中,我们开发了通过FR分析QEI的方法,以估算QTL和QEI的作用和位置,并根据环境变量解释QEI。提出了针对QTL和QEI的主要影响的随机检验。在干旱胁迫和土壤氮含量不同的八个环境中评估了F2衍生的F3族的种群,并测量了性状产量和花期丝裂间隔(ASI)。对于谷物产量,染色体1和10表现出显着的QEI,而在染色体3和8中,仅观察到主要效应QTL。对于ASI,在1号,2号,6号,8号和10号染色体上观察到QTL主效应,而仅在8号染色体上观察到QEI。对1号染色体上的QEI的单产进行评估表明,QTL主效应可以解释35.8%。 QTL + QEI变异性,而QEI解释为64.2%。开花期的最低温度占QEI的77.6%。在10号染色体上的QEI分析显示,QTL主效应解释了59.8%的QTL + QEI变异性,而QEI解释了40.2%。开花期的最高温度解释了QEI的23.8%。这项研究的结果表明,使用FR绘制QTL和分析QEI的可能性取决于环境变量。 PLS回归有效地解决了其他QTL产生的背景噪声。

著录项

  • 来源
    《Theoretical and Applied Genetics》 |2006年第6期|1009-1023|共15页
  • 作者单位

    Universidad Autónoma ChapingoBiometrics and Statistics Unit International Maize and Wheat Improvement Center (CIMMYT);

    Laboratory of Plant Breeding Department of Plant Science Wageningen University;

    Biometrics and Statistics Unit International Maize and Wheat Improvement Center (CIMMYT);

    Genetic Resources Program International Maize and Wheat Improvement Center (CIMMYT);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号