...
首页> 外文期刊>Surface Science Reports >Adsorption and self-assembly of bio-organic molecules at model surfaces: A route towards increased complexity
【24h】

Adsorption and self-assembly of bio-organic molecules at model surfaces: A route towards increased complexity

机译:生物有机分子在模型表面的吸附和自组装:增加复杂性的途径

获取原文

摘要

Understanding the bio-physical-chemical interactions at nanostructured biointerfaces and the assembly mechanisms of so-called hybrid nano-composites is nowadays a key issue for nanoscience in view of the many possible applications foreseen. The contribution of surface science in this field is noteworthy since, using a bottom-up approach, it allows the investigation of the fundamental processes at the basis of complex interfacial phenomena and thus it helps to unravel the elementary mechanisms governing them. Nowadays it is well demonstrated that a wide variety of different molecular assemblies can form upon adsorption of small biomolecules at surfaces. The geometry of such serf-organized structures can often be tuned by a careful control of the experimental conditions during the deposition process. Indeed an impressive number of studies exists (both experimental and - to a lesser extent - theoretical), which demonstrates the ability of molecular self-assembly to create different structural motifs in a more or less predictable manner, by tuning the molecular building blocks as well as the metallic substrate. In this frame, amino acids and small peptides at surfaces are key, basic, systems to be studied. The amino acids structure is simple enough to serve as a model for the chemisorption of biofunctional molecules, but their adsorption at surfaces has applications in surface functionalization, in enantiospecific catalysis, biosensing, shape control of nanoparticles or in emerging fields such as "green" corrosion inhibition. In this paper we review the most recent advances in this field. We shall start from the adsorption of amino acids at metal surfaces and we will evolve then in the direction of more complex systems, in the light of the latest improvements of surface science techniques and of computational methods. On one side, we will focus on amino acids adsorption at oxide surfaces, on the other on peptide adsorption both at metal and oxide substrates. Particular attention will be drawn to the added value provided by the combination of several experimental surface science techniques and to the precious contribution of advanced complementary computational methods to resolve the details of systems of increased complexity. Finally, some hints on experiments performed in presence of water and then characterized in UHV and on the related theoretical work will be presented. This is a further step towards a better approximation of real biological systems. However, since the methods employed are often not typical of surface science, this topic is not developed in detail.
机译:鉴于预期的许多可能应用,了解纳米结构生物界面处的生物物理化学相互作用和所谓的杂化纳米复合材料的组装机理是当今纳米科学的一个关键问题。表面科学在该领域的贡献是值得注意的,因为它采用了一种自下而上的方法,可以研究基于复杂界面现象的基本过程,从而有助于阐明控制它们的基本机制。如今,已经充分证明,在表面吸附小生物分子时,会形成各种各样的分子组装体。这种由农奴组织的结构的几何形状通常可以通过在沉积过程中仔细控制实验条件来调整。确实存在着大量的研究(包括实验性的研究,以及(在较小程度上的理论性的)研究),这些研究证明了分子自组装通过调节分子构件,以或多或少可预测的方式产生不同结构基序的能力。作为金属基材。在这种情况下,表面的氨基酸和小肽是关键的基本系统,需要研究。氨基酸结构非常简单,可以用作生物功能分子化学吸附的模型,但是它们在表面的吸附在表面功能化,对映体催化,生物传感,纳米颗粒的形状控制或新兴领域(例如“绿色”腐蚀)中都有应用抑制。在本文中,我们回顾了该领域的最新进展。我们将从氨基酸在金属表面的吸附开始,然后根据表面科学技术和计算方法的最新改进,朝着更复杂的系统的方向发展。一方面,我们将重点放在氧化物表面的氨基酸吸附上,另一方面,将重点放在金属和氧化物基质上的肽吸附上。将特别注意几种实验表面科学技术的结合所提供的附加值,以及解决复杂性增加的系统细节的高级互补计算方法的宝贵贡献。最后,将给出一些有关在水存在下进行的实验,然后用特高压进行表征的提示,以及有关的理论工作。这是迈向更好地逼近真实生物系统的又一步。但是,由于所采用的方法通常不是表面科学的典型方法,因此本主题未作详细介绍。

著录项

  • 来源
    《Surface Science Reports 》 |2015年第4期| 449-553| 共105页
  • 作者单位

    Institut de Recherches de Chimie de Paris UMR 8247 ENSCP Chimie Paristech, 11 rue P. Et M. Curie, 75005 Paris, France;

    Sorbonne Universite, UPMC Univ Paris 06, UMR CNRS 7197, Laboratoire de Reactivite de Surface, 4 Place Jussieu, 75231 Paris Cedex 05, France;

    Sorbonne Universite, UPMC Univ Paris 06, UMR 7574, Laboratoire Chimie de la Matiere Condensee, College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France;

    Istituto dei Materiali per l'Elettronica e il Magnetismo, Consiglio Nazionale delle Ricerche, U.O.S. Genova, Via Dodecaneso 33, 16146 Genova, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号