首页> 外文期刊>Structural Safety >Physics-based probabilistic models: Integrating differential equations and observational data
【24h】

Physics-based probabilistic models: Integrating differential equations and observational data

机译:基于物理的概率模型:集微分方程和观察数据

获取原文
获取原文并翻译 | 示例
           

摘要

This paper proposes a general formulation for physics-based probabilistic models that are computationally convenient for uncertainty quantification and reliability analysis of complex systems while integrating the governing physical laws. The proposed formulation starts with the prediction of the quantities of interest using differential equations that represent the governing physical laws. For computational efficiency, the solution of the governing differential equations might be approximated. The predictions from the differential equations are then improved by introducing analytical correction terms that capture those physical characteristics of the phenomenon not fully captured by the differential equations. The paper also presents nested probabilistic models for uncertain physical characteristics that are difficult to measure. Observational data are required to calibrate the nested probabilistic models and correction terms. To provide context, the paper discusses physics-based probabilistic models for a class of boundary value problems that includes as a special case, the steady advection-diffusion-reaction equation, governing a diverse range of physical, chemical, and biological phenomena. Using the Bayesian approach, the differential equations are combined with observational data and any prior information to estimate the unknown model parameters and uncertain system characteristics. The paper then formulates the reliability problem for the computation of failure probability of physical and engineering systems using the proposed physics-based probabilistic models. To illustrate, the paper considers the reliability analysis of axially loaded rock socketed drilled shafts.
机译:本文提出了一种基于物理学的概率模型的一般性,这些模型在计算上方便地对复杂系统的不确定性量化和可靠性分析,同时整合管理实际法律。所提出的制剂从使用代表理论物理法律的微分方程的利益量的预测开始。为了计算效率,可以近似控制微分方程的解。然后通过引入分析校正术语来改善来自微分方程的预测,该分析校正术语捕获不完全被微分方程完全捕获的现象的物理特征。本文还提出了嵌套的概率模型,用于难以测量的不确定物理特征。需要观察数据来校准嵌套概率模型和校正项。为了提供上下文,本文讨论了基于物理的概率模型,用于一类包括特殊情况的边界值问题,稳定的平流扩散反应方程,控制各种物理,化学和生物现象。使用贝叶斯方法,微分方程与观察数据和任何先前信息组合,以估计未知的模型参数和不确定的系统特征。然后,本文使用所提出的基于物理的概率模型来制定用于计算物理和工程系统的失效概率的可靠性问题。为了说明,本文考虑了轴向装载的岩石钻孔轴的可靠性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号