首页> 外文期刊>Structural health monitoring >Combination of damage feature decisions with adaptive boosting for improving the detection performance of a structural health monitoring framework: Validation on an operating wind turbine
【24h】

Combination of damage feature decisions with adaptive boosting for improving the detection performance of a structural health monitoring framework: Validation on an operating wind turbine

机译:损伤特征决策具有自适应促进的决策,用于提高结构健康监测框架的检测性能:操作风力涡轮机的验证

获取原文
获取原文并翻译 | 示例
           

摘要

This article proposes the deployment of adaptive boosting (AdaBoost) for combining damage feature decisions and improving the detection accuracy of structural health monitoring algorithms. In structural health monitoring applications, damage-sensitive features are combined with classifiers to define decision boundaries and provide information about the structural state. Boosting algorithms combine multiple classifiers aiming at the improvement of their performance. In this study, AdaBoost is deployed on the realizations of a modular structural health monitoring framework, which consists of three tiers: data normalization based on environmental and operational conditions; extraction of damage features, also referred to as condition parameters; and hypothesis testing. Each condition parameter–hypothesis testing pair composes a classifier which is used in AdaBoost as a weak classifier. The integration of AdaBoost with the structural health monitoring framework is validated using experimental data of a 3-kW wind turbine located at the Los Alamos National Laboratory and data generated from a mechanical model of the same structure. The AdaBoost classifier is evaluated with respect to the error rate as well as the true positive and false positive rates, which are typically used in receiver operating characteristic curves. The AdaBoost classifier outperforms the framework classifiers in many cases, improving drastically the detection performance. However, it is shown that the boosting performance depends on the relative location of the condition parameter values on the condition parameter space. The overlaps between the condition parameter values to be combined are quantified using the Bhattacharyya coefficient, which provides a metric for assessing the boosting potential. Finally, omitting condition parameter values corresponding to specific environmental and operational conditions from the boosting process is proposed for obtaining optimum boosting results.
机译:本文提出了自适应增强(AdaBoost算法)对合并损伤特征的决策和提高结构健康监测算法的检测精度的部署。结构健康监控应用,损坏敏感部件相结合,与分类器来定义判决边界,并提供有关结构状态信息。增强算法结合多分类针对其性能的提高。在这项研究中,AdaBoost算法被部署在一个模块化结构健康监测框架,它由三层的实现方式:基于环境和操作条件的数据归一化;的损伤的特征,也被称为条件参数提取;和假设检验。每个条件参数假设检验对构成其在AdaBoost算法用作弱分类器的分类器。 AdaBoost算法与结构健康监测框架一体化是利用位于洛斯阿拉莫斯国家实验室和从相同结构的机械模型生成的数据的3千瓦的风力涡轮机的实验数据验证。在AdaBoost分类相对于该错误率以及真阳性和假阳性率,其通常在接收器工作特性曲线用于评估。该AdaBoost分类优于在许多情况下框架分类,大大提高了检测性能。然而,结果表明,提高的性能取决于所述条件参数空间中的条件参数值的相对位置。要组合的条件的参数值之间的重叠使用Bhattacharyya系数,它提供了用于评估增压电位的度量进行量化。最后,对应于从升压过程中的具体环境和操作条件省略条件的参数值,提出了用于获得最佳升压效果。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号