首页> 外文期刊>Structural Control and Health Monitoring >Experimental realisation of the real-time controlled smart magnetorheological elastomer seismic isolation system with shake table
【24h】

Experimental realisation of the real-time controlled smart magnetorheological elastomer seismic isolation system with shake table

机译:振动台实时控制智能磁流变弹性体隔震系统的实验实现

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Traditional base isolation protects structures against severe seismic events by providing a designated lateral flexibility at the base level of the structures. Due to its inherent passive nature, in the design process, compromises have to be made among performance of different design targets (displacements, interstorey drifts, accelerations, etc.). In addition, as the working principle, the effectiveness of a base isolation relies on the degree of "decoupling" between ground excitation and superstructure. However, a higher degree of decoupling compromises the stability of the structures. In other words, for a base solation system, it possesses inherent conflicts between the effectiveness of the isolation and the lateral stability of the structure. A concept of new smart base isolation system is proposed, in which real-time controllable decoupling for a base isolation structure is achieved by employing magnetorheological elastomer (MRE) base isolators. With controllable lateral stiffness, the smart base isolation system can achieve an optimal decoupling by instantly shifting the structure's natural frequencies to a nonresonant region. This paper aims at experimentally proving and validating this innovative concept, including designing a three-storey shear building model equipped with MRE base isolators, demonstrating the feasibility and evaluating the performance of the proposed system by a series of shake table testing. The comprehensive experimental design and results of shake table testing have concept-proved the proposed smart MRE base isolation system for future development in practical applications.
机译:传统的基础隔离通过在结构的基础层提供指定的横向柔韧性来保护结构免受严重地震的影响。由于其固有的被动特性,在设计过程中必须在不同设计目标的性能(位移,层间漂移,加速度等)之间做出折衷。此外,作为工作原理,基础隔离的有效性取决于地面激励与上部结构之间的“解耦”程度。但是,较高程度的去耦会损害结构的稳定性。换句话说,对于基础绝缘体系,它在隔离效果和结构的横向稳定性之间具有固有的冲突。提出了一种新的智能基础隔离系统的概念,其中通过使用磁流变弹性体(MRE)基础隔离器实现了基础隔离结构的实时可控解耦。通过可控制的横向刚度,智能基础隔离系统可以通过将结构的固有频率立即移至非谐振区域来实现最佳去耦。本文旨在通过实验证明和验证这一创新概念,包括设计配备MRE基础隔离器的三层剪力建筑模型,展示其可行性以及通过一系列振动台测试评估该系统的性能。全面的实验设计和振动台测试的结果已在概念上证明了拟议的智能MRE基础隔离系统,可在实际应用中进一步开发。

著录项

  • 来源
    《Structural Control and Health Monitoring》 |2020年第1期|e2476.1-e2476.24|共24页
  • 作者

  • 作者单位

    Univ Technol Sydney Sch Civil & Environm Engn Ultimo NSW 2007 Australia;

    Univ Technol Sydney Sch Civil & Environm Engn Ultimo NSW 2007 Australia|Tianjin Chengjian Univ Tianjin Key Lab Civil Struct Protect & Reinforcem Tianjin Peoples R China;

    Univ Technol Sydney Sch Civil & Environm Engn Ultimo NSW 2007 Australia|Nanjing Tech Univ Coll Civil Engn Nanjing 211816 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    base isolation; degree of decoupling; intellectual structure; magnetorheological elastomer; real-time control;

    机译:基本隔离解耦度;知识结构;磁流变弹性体实时控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号