首页> 外文期刊>SPE Reservoir Evaluation & Engineering >Fluid Flow in a Fractured Reservoir Using a Geomechanically Constrained Fault-Zone-Damage Model for Reservoir Simulation
【24h】

Fluid Flow in a Fractured Reservoir Using a Geomechanically Constrained Fault-Zone-Damage Model for Reservoir Simulation

机译:使用地质力学约束断层带损伤模型进行裂缝模拟的储层中的流体流动

获取原文
获取原文并翻译 | 示例
           

摘要

Secondary fractures and faults associated with reservoir-scale faults affect both permeability and permeability anisotropy and hence play an important role in controlling the production behavior of a faulted reservoir. It is well known from geologic studies that there is a concentration of secondary fractures and faults in damage zones adjacent to large faults. Because there are usually inadequate data to fully incorporate damage-zone fractures and faults into reservoir-simulation models, this study uses the principles of dynamic ruptute propagation from earthquake seismology to predict the naturs of fractured/damage zones associated with reservoir-scale faults. We include geomechanical constraints in our reservoir model and propose a generalized workflow to incorporate damage zones into reservoir-simulation models more routinely.rnThe model we propose calculates the extent of the damage zone along the fault plane by estimating the volume of rock brought to failure by the stress perturbation associated with dynamic-rupture propagation. We apply this method to a real reservoir using both field- and well-scale observations. At the rupture front, damage intensity gradually decreases as we move away from the rupture front or fault plane. In the studied reservoir, the secondary-failure planes in the damage zone are high-angle normal faults striking subparallel to the parent fault, which may affect the permeability of the reservoir in both horizontal and vertical directions. We calibrate our modeling with both outcrop and well observations from a number of studies. We show that dynamic-rupture propagation gives a reasonable first-order approximation of damage zones in terms of permeability and permeability anisotropy in order to be incorporated into reservoir simulators.
机译:与储层规模断层有关的次生裂缝和断层影响渗透率和渗透率各向异性,因此在控制断层储层的生产行为中起着重要作用。从地质学研究众所周知,在邻近大断层的破坏带中存在着次生裂缝和断层的集中。由于通常没有足够的数据将破坏区的断裂和断层完全纳入储层模拟模型,因此本研究使用地震地震学中动态破裂传播的原理来预测与储层规模断层有关的裂缝/破坏区的自然性。我们将地质力学约束条件包括在储层模型中,并提出了一种通用的工作流程,将损伤带更常规地纳入储层模拟模型中。与动态破裂传播有关的应力扰动。我们使用野外和井规模观测将这种方法应用于一个实际的储层。在破裂前缘,随着我们远离破裂前缘或断层平面,破坏强度逐渐降低。在所研究的储层中,破坏区的次生破坏平面是大角度的正断层,与母层断层平行,可能会在水平和垂直方向上影响储层的渗透性。我们通过大量研究的露头观测和井眼观测来校准模型。我们表明,动态破裂传播在渗透率和渗透率各向异性方面给出了破坏带的合理一阶近似值,以便将其纳入储层模拟器中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号