首页> 外文期刊>Space Weather >Global Joule heating index derived from thermospheric density physics-based modeling and observations
【24h】

Global Joule heating index derived from thermospheric density physics-based modeling and observations

机译:全球焦耳热指数源自热球密度基于物理学的建模和观测

获取原文
获取原文并翻译 | 示例
       

摘要

The primary operational impact of upper atmospheric neutral density variability is on satellite drag. Drag is the most difficult force to model mainly because of the complexity of neutral atmosphere variations driven by solar UV and EUV radiation power, magnetospheric energy input, and the propagation from below of lower atmosphere waves. Taking into account the self-consistent interactions between neutral winds, composition, ion drifts, and ionization densities, first-principles models are able to provide a more realistic representation of neutral density than empirical models in the upper atmosphere. Their largest sources of uncertainty, however, are the semiannual variations in neutral density and the magnitude, spatial distribution, and temporal evolution of the magnetospheric energy input. In this study, results from the physics-based coupled thermosphere-ionosphere-plasmasphere electrodynamics (CTIPe) model and measurements from the CHAMP satellite are compared and used to improve the modeled thermospheric neutral density estimates. The good agreement between modeled and observed densities over an uninterrupted yearlong period of variable conditions gives confidence that the thermosphere-ionosphere system energy influx from solar radiation and magnetospheric sources is reasonable and that Joule heating, the dominant source during geomagnetically disturbed conditions, is appropriately estimated. On the basis of the correlation between neutral density and energy injection, a global time-dependent Joule heating index (JHI) is derived from the relationship between Joule heating computed by the CTIPe model and neutral density measured by the CHAMP satellite. Preliminary results show an improvement in density estimates using CTIPe JHI, demonstrating its potential for neutral density modeling applied to atmospheric drag determination.
机译:高层大气中性密度变化的主要操作影响是卫星阻力。阻力是最难建模的力,主要是因为中性大气变化的复杂性是由太阳紫外线和EUV辐射功率,磁层能量输入以及较低大气波从下方的传播所驱动的。考虑到中性风,成分,离子漂移和电离密度之间的自洽相互作用,第一原理模型比高层大气中的经验模型能够更真实地表示中性密度。然而,它们最大的不确定性来源是中性密度以及磁层能量输入的大小,空间分布和时间演变的半年变化。在这项研究中,比较了基于物理学的热球-电离层-等离子层电动力学(CTIPe)模型的结果,以及来自CHAMP卫星的测量结果,并将其用于改进建模的热球中性密度估计。在连续一年的可变条件下,模型密度与观测密度之间的良好一致性使人相信,太阳辐射和磁层来源的热层-电离层系统能量流入是合理的,并且地磁扰动条件下的主要来源焦耳加热得到了适当估计。根据中性密度和能量注入之间的相关性,从CTIPe模型计算出的焦耳热与CHAMP卫星测得的中性密度之间的关系中得出了全局时变焦耳热指数(JHI)。初步结果表明,使用CTIPe JHI进行的密度估算得到了改善,证明了其在大气阻力确定中用于中性密度建模的潜力。

著录项

  • 来源
    《Space Weather》 |2012年第3期|1-13|共13页
  • 作者单位

    Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, USA., Also at NOAA Space Weather Prediction Center, Boulder, Colorado, USA.;

    Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, USA., Also at NOAA Space Weather Prediction Center, Boulder, Colorado, USA.;

    NOAA Space Weather Prediction Center, Boulder, Colorado, USA.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Atmospheric modeling; Satellites; Heating; Space vehicles; Orbits; Indexes;

    机译:大气建模卫星加热航天器轨道指数;
  • 入库时间 2022-08-17 23:59:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号