首页> 外文期刊>Space Weather >A global scale picture of ionospheric peak electron density changes during geomagnetic storms
【24h】

A global scale picture of ionospheric peak electron density changes during geomagnetic storms

机译:地磁暴期间电离层峰值电子密度变化的全球规模图

获取原文
获取原文并翻译 | 示例
           

摘要

Changes in ionospheric plasma densities can affect society more than ever because of our increasing reliance on communication, surveillance, navigation, and timing technology. Models struggle to predict changes in ionospheric densities at nearly all temporal and spatial scales, especially during geomagnetic storms. Here we combine a 50 year (1965–2015) geomagnetic disturbance storm time (Dst) index with plasma density measurements from a worldwide network of ∼132 vertical incidence ionosondes to develop a picture of global scale changes in peak plasma density due to geomagnetic storms. Vertical incidence ionosondes provide measurements of the critical frequency of the ionospheric F2 layer (f0F2), a direct measure of the peak electron density (NmF2) of the ionosphere. By dissecting the NmF2 perturbations with respect to the local time at storm onset, season, and storm intensity, it is found that (i) the storm-associated depletions (negative storm effects) and enhancements (positive storm effects) are driven by different but related physical mechanisms, and (ii) the depletion mechanism tends to dominate over the enhancement mechanism. The negative storm effects, which are detrimental to HF radio links, are found to start immediately after geomagnetic storm onset in the nightside high-latitude ionosphere. The depletions in the dayside high-latitude ionosphere are delayed by a few hours. The equatorward expansion of negative storm effects is found to be regulated by storm intensity (farthest equatorward and deepest during intense storms), season (largest in summer), and time of day (generally deeper on the nightside). In contrast, positive storm effects typically occur on the dayside midlatitude and low-latitude ionospheric regions when the storms are in the main phase, regardless of the season. Closer to the magnetic equator, moderate density enhancements last up to 40 h during the recovery phase of equinox storms, regardless of the local time. Strikingly, high-latitude plasma densities are moderately enhanced for up to 60 h prior to the actual onset of storms during the equinoxes and summer; a potential precursor of a geomagnetic storm.
机译:由于我们对通信,监视,导航和计时技术的日益依赖,电离层等离子体密度的变化对社会的影响比以往任何时候都大。模型很难预测几乎所有时间和空间尺度上的电离层密度变化,尤其是在地磁风暴期间。在这里,我们将一个50年(1965-2015年)的地磁干扰风暴时间(Dst)指数与来自132个垂直入射离子探空仪的全球网络的等离子体密度测量值结合起来,得出了由地磁风暴引起的峰值血浆密度的全球范围变化的图片。垂直入射电离超声仪可测量电离层F2层的临界频率(f0F2),直接测量电离层的峰值电子密度(NmF2)。通过对暴风雨开始,季节和暴风强度的本地时间进行NmF2扰动剖析,发现(i)与暴风雨相关的耗竭(负暴风雨影响)和增强(正暴风雨影响)是由不同的因素驱动的,但相关的物理机制,以及(ii)耗尽机制趋于主导增强机制。发现负面的风暴效应对高频无线电链路是有害的,它是在夜空高纬度电离层发生地磁风暴后立即开始的。白天高纬度电离层的耗竭被延迟了几个小时。发现负面风暴影响的赤道扩展受风暴强度(赤道最远,强烈风暴中最深),季节(夏季最大)和一天中的时间(通常在夜间更深)调节。相反,当风暴处于主要阶段时,无论季节如何,通常在白天的中纬度和低纬度电离层区域会产生积极的风暴影响。距磁赤道更近的地方,在春分风暴恢复阶段,无论本地时间如何,中等强度的增强都可以持续长达40小时。令人吃惊的是,在春分和夏季实际发生暴风雨之前,高纬度等离子体的密度在长达60 h的时间内被适度提高;潜在的地磁风暴的前兆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号