...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >A Low-Power Processor With Configurable Embedded Machine-Learning Accelerators for High-Order and Adaptive Analysis of Medical-Sensor Signals
【24h】

A Low-Power Processor With Configurable Embedded Machine-Learning Accelerators for High-Order and Adaptive Analysis of Medical-Sensor Signals

机译:具有可配置嵌入式机器学习加速器的低功耗处理器,可对医学传感器信号进行高阶和自适应分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low-power sensing technologies have emerged for acquiring physiologically indicative patient signals. However, to enable devices with high clinical value, a critical requirement is the ability to analyze the signals to extract specific medical information. Yet given the complexities of the underlying processes, signal analysis poses numerous challenges. Data-driven methods based on machine learning offer distinct solutions, but unfortunately the computations are not well supported by traditional DSP. This paper presents a custom processor that integrates a CPU with configurable accelerators for discriminative machine-learning functions. A support-vector-machine accelerator realizes various classification algorithms as well as various kernel functions and kernel formulations, enabling range of points within an accuracy-versus-energy and -memory trade space. An accelerator for embedded active learning enables prospective adaptation of the signal models by utilizing sensed data for patient-specific customization, while minimizing the effort from human experts. The prototype is implemented in 130-nm CMOS and operates from 1.2 V–0.55 V (0.7 V for SRAMs). Medical applications for EEG-based seizure detection and ECG-based cardiac-arrhythmia detection are demonstrated using clinical data, while consuming 273 $mu$J and 124 $mu$J per detection, respectively; this represents 62.4${times}$ and 144.7${times}$ energy reduction compared to an implementation based on the CPU. A patient-adaptive cardiac-arrhythmia detector is also demonstrated, reducing the analysis-effort required for model customization by 20 ${times}$.
机译:已经出现了用于获取生理指示性患者信号的低功率传感技术。但是,为了使设备具有较高的临床价值,关键的要求是能够分析信号以提取特定医学信息的能力。然而,考虑到基础流程的复杂性,信号分析提出了许多挑战。基于机器学习的数据驱动方法提供了独特的解决方案,但是不幸的是,传统的DSP无法很好地支持计算。本文提出了一种定制处理器,该处理器将CPU与可配置的加速器集成在一起,以实现区别性的机器学习功能。支持向量机加速器实现了各种分类算法以及各种核函数和核公式,从而在精度与能量和内存交易空间内实现了点的范围。用于嵌入式主动学习的加速器通过利用感测到的数据进行特定于患者的自定义来实现信号模型的前瞻性调整,同时最大程度地减少了人类专家的工作量。该原型在130nm CMOS中实现,工作电压为1.2V至0.55V(对于SRAM为0.7V)。使用临床数据证明了基于EEG的癫痫发作检测和基于ECG的心律失常检测的医疗应用,同时消耗了273个 $ mu $ J和124个 $ mu $ J;这表示62.4 $ {times $$ 和144.7 与基于CPU的实现相比,减少了$ {times $$ 能耗。还展示了一种适应患者的心律不齐检测器,通过20 $ {times $$ 减少了模型定制所需的分析工作量。公式>。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号