首页> 外文期刊>Solid-State Circuits, IEEE Journal of >A Millimeter-Wave Non-Magnetic Passive SOI CMOS Circulator Based on Spatio-Temporal Conductivity Modulation
【24h】

A Millimeter-Wave Non-Magnetic Passive SOI CMOS Circulator Based on Spatio-Temporal Conductivity Modulation

机译:基于时空电导率调制的毫米波非磁无源SOI CMOS循环器

获取原文
获取原文并翻译 | 示例
       

摘要

Linear, time-invariant, passive circuits and systems constructed from conventional materials with symmetric permittivity and permeability tensors are reciprocal. Breaking Lorentz reciprocity enables the implementation of non-reciprocal components, such as gyrators, isolators, and circulators, which find application in numerous wireless communication systems. Non-reciprocal components are traditionally implemented using ferrite materials, which exhibit the Faraday effect under the application of an external magnetic field bias. However, ferrite materials cannot be integrated into CMOS fabrication processes and require an external biasing magnet, and hence are bulky and expensive. Recently, there has been significant research interest in the implementation of non-magnetic non-reciprocal components using temporal modulation, including a fully integrated 25-GHz circulator in a 45-nm SOI CMOS, demonstrating magneticfree passive non-reciprocity on silicon at millimeter waves for the first time. This paper presents a detailed analysis of the millimeter-wave circulator in both time and frequency domains. Millimeter-wave non-reciprocal operation is enabled by the concept of spatio-temporal conductivity modulation, which achieves broadband non-reciprocal gyrator functionality over theoretically infinite bandwidth (BW). When compared with prior approaches based on N-path filters, spatio-temporal conductivity modulation requires only four-phase 50% duty-cycle clocking at frequencies significantly lower than the operation frequency, enabling scaling to millimeter waves. The 25-GHz circulator achieves minimum transmitter (TX)-to-antenna (ANT)/ANT-to-receiver (RX) insertion losses of 3.3 dB/3.2 dB, respectively, with a 1-dB BW of 4.6 GHz. TX-to-RX isolation is 18.3-21.2 dB (limited by the measurement setup) over the same BW. The circulator IC occupies an area of 1.2 mm × 1.8 mm (λ/8 × λ/6). The spatiotemporal conductivity modulation concept is readily scalable across frequency and can be an enabler for higher millimeterwave (e.g., 77 GHz) circulators as well as optical isolators.
机译:由具有对称介电常数和磁导率张量的常规材料构成的线性,时不变,无源电路和系统是互易的。打破Lorentz互惠性可以实现不可逆的组件,例如回旋器,隔离器和循环器,这些组件已在众多无线通信系统中得到应用。传统上,不可逆组件是使用铁氧体材料实现的,在施加外部磁场偏置的情况下,铁氧体材料表现出法拉第效应。但是,铁氧体材料不能集成到CMOS制造工艺中,并且需要外部偏置磁体,因此体积大且昂贵。最近,人们对使用时间调制实现非磁性非可逆组件产生了极大的研究兴趣,包括在45 nm SOI CMOS中完全集成的25 GHz环行器,证明了毫米波在硅上的无磁无源非可逆性首次。本文对毫米波环行器进行了时域和频域的详细分析。时空电导率调制概念实现了毫米波不可逆操作,该理论在理论上无限的带宽(BW)上实现了宽带不可逆陀螺仪功能。与基于N路径滤波器的现有方法相比,时空电导率调制仅需要在比工作频率低得多的频率上进行四相50%占空比的计时,从而可以缩放至毫米波。 25 GHz循环器实现了最小发送器(TX)到天线(ANT)/ ANT到接收器(RX)的插入损耗,分别为3.3 dB / 3.2 dB和4.6 GHz的1dB BW。在同一带宽上,TX到RX的隔离度为18.3-21.2 dB(受测量设置的限制)。循环器IC的面积为1.2 mm×1.8 mm(λ/ 8×λ/ 6)。时空电导率调制概念很容易在整个频率范围内扩展,并且可以成为更高毫米波(例如77 GHz)环行器和光隔离器的促成因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号