首页> 外文期刊>Solar Energy >Maximum fluid power condition in solar chimney power plants - An analytical approach
【24h】

Maximum fluid power condition in solar chimney power plants - An analytical approach

机译:太阳烟囱发电厂的最大流体功率条件-一种分析方法

获取原文
获取原文并翻译 | 示例
       

摘要

Main features of a solar chimney power plant are a circular greenhouse type collector and a tall chimney at its centre. Air flowing radially inwards under the collector roof heats up and enters the chimney after passing through a turbogenerator. The objective of the study was to investigate analytically the validity and applicability of the assumption that, for maximum fluid power, the optimum ratio of turbine pressure drop to pressure potential (available system pressure difference) is 2/3. An initial power law model assumes that pressure potential is proportional to volume flow to the power m, where m is typically a negative number between 0 and —1, and that the system pressure drop is proportional to the power n, where typically n = 2. The analysis shows that the optimum turbine pressure drop as fraction of the pressure potential is (n — m)/(n + 1), which is equal to 2/3 only when m = 0, implying a constant pressure potential, independent of flow rate. Consideration of a basic collector model proposed by Schlaich leads to the conclusion that the value of m is equal to the negative of the collector floor-to-exit efficiency. A more comprehensive optimization scheme, incorporating the basic collector model of Schlaich in the analysis, shows that the power law approach is sound and conservative. It is shown that the constant pressure potential assumption (m = 0) may lead to appreciable underestimation of the performance of a solar chimney power plant, when compared to the analyses presented in the paper. More important is that both these analyses predict that maximum fluid power is available at much lower flow rate and much higher turbine pressure drop than predicted by the constant pressure potential assumption. Thus, the constant pressure potential assumption may lead to overestimating the size of the flow passages in the plant, and designing a turbine with inadequate stall margin and excessive runaway speed margin. The derived equations may be useful in the initial estimation of plant performance, in plant performance analysis and in control algorithm design. The analyses may also serve to set up test cases for more comprehensive plant models.
机译:太阳能烟囱发电厂的主要特征是圆形温室式集热器和位于中心的高烟囱。在集热器顶盖下方径向向内流动的空气经过涡轮发电机后变热并进入烟囱。该研究的目的是通过分析研究以下假设的有效性和适用性:对于最大流体功率,涡轮机压降与压力势的最佳比率(可用系统压差)为2/3。初始功率定律模型假设压力势与功率m的体积流量成正比,其中m通常为0到-1之间的负数,并且系统压降与功率n成正比,其中n = 2分析表明,作为压力势的一部分的最佳涡轮压降为(n_m)/(n + 1),仅当m = 0时才等于2/3,这意味着恒定的压力势,与流量。考虑到Schlaich提出的基本收集器模型,得出的结论是m的值等于收集器从底到出口效率的负值。一个更全面的优化方案,在分析中结合了Schlaich的基本收集器模型,表明幂律方法是合理且保守的。结果表明,与本文介绍的分析相比,恒压潜在假设(m = 0)可能导致对太阳能烟囱发电厂性能的明显低估。更重要的是,这两个分析都预测,与恒压潜在假设所预测的相比,在更低的流量和更高的涡轮压降下可获得最大流体动力。因此,恒定压力潜在假设可能导致高估设备中流道的大小,并设计出失速裕度不足和失控速度裕度过高的涡轮机。导出的方程式可能对工厂性能的初始估计,工厂性能分析和控制算法设计很有用。这些分析还可以用于建立更全面的工厂模型的测试案例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号