首页> 外文期刊>Solar Energy >Simulation and optimization of a novel solar-powered adsorption refrigeration module
【24h】

Simulation and optimization of a novel solar-powered adsorption refrigeration module

机译:新型太阳能吸附式制冷模块的仿真与优化

获取原文
获取原文并翻译 | 示例
       

摘要

A mathematical model has been developed to simulate and optimize the performance of a solar-powered adsorption refrigeration module with the solid adsorption pair of domestic type of charcoal and methanol. The module is composed of a modified glass tube having a circular generator (sorption bed) at one end and a combined evaporator and condenser at the other end. The charcoal is mixed with small pieces of blackened steel to enhance the heat transfer in the sorption bed. Simple arrangement of plane reflectors is used to heat the generator. The angles of inclination of the reflectors are chosen according to optical and thermal analysis to receive maximum solar energy at noontime. The model accounts for transient heat and mass transfer inside the bed of the module. After an experimental validation based on the results of previous tests of this module, the effects of design and climatic conditions on the module performance all year round are discussed and optimized. It is found by virtue of using the proposed reflector arrangement, solar energy input to the system increases especially in cold climate. This increase ranges from 10% for hot climate to 30% for cold climate. The effects of using steel additives inside the sorption bed and using glass shell over the bed are investigated. It is found that the percentage increase in desorped methanol ranges from 3% in the hottest month to about 19% in the coldest month as a result of using a mass of steel pieces equal about 33% of the mass of the charcoal, (M_(st)/M_(ch) = 0.33). These improvements increase to 7% and 43% in the hottest and coldest months respectively when glass shell is used over the bed. Generally, the improvements are more pronounced in cold months than hot ones. The ratio (M_(st)/M_(ch) inside the sorption bed is optimized and found to be 0.75. Comparison between the model results for the steel additives ratio (M_(st)/M_(ch) = 0.33 and results obtained with the optimum ratio shows that, the yearly average ice production increases from 0.23 to 0.25 kg/day, the yearly average bed efficiency increases from 55.2% to 58.5%, and the yearly average net COP increases from 0.146 to 0.1558. The effect of climatic conditions on the module performance all year round is also investigated. It is found that, about 28% of the cooling energy is lost due to climate effect in hot months and this ratio reaches 17.5% in cold months.
机译:已经开发了数学模型来模拟和优化具有家用型木炭和甲醇的固体吸附对的太阳能吸附式制冷模块的性能。该模块由改进的玻璃管组成,该玻璃管的一端具有圆形发生器(吸附床),另一端具有组合的蒸发器和冷凝器。木炭与小块发黑钢混合以增强吸附床中的热传递。平面反射器的简单布置用于加热发生器。根据光学和热分析来选择反射器的倾斜角度,以在中午接收最大的太阳能。该模型考虑了模块床内部的瞬态热和质量传递。在根据该模块以前的测试结果进行实验验证后,讨论并优化了设计和气候条件对模块性能的影响。通过使用所提出的反射器装置发现,特别是在寒冷的气候中,输入到系统的太阳能增加。这种增加的范围从炎热气候的10%到寒冷气候的30%。研究了在吸附床内部使用钢添加剂和在吸附床上方使用玻璃壳的效果。结果发现,由于使用的钢片质量等于木炭质量的33%,因此脱甲醇的百分比增加范围从最热的月份的3%到最冷的月份的大约19%(M_( st)/ M_(ch)= 0.33)。当在床上使用玻璃壳时,在最热和最冷的月份中,这些改进分别增加到7%和43%。通常,在寒冷月份,改进要比高温月份更为明显。优化了吸附床内部的比率(M_(st)/ M_(ch)为0.75。钢添加剂比率(M_(st)/ M_(ch)= 0.33)与模型结果之间的比较。最佳比例表明,年平均产冰量从0.23增加到0.25 kg / day,年平均床效率从55.2%增加到58.5%,年平均净COP从0.146增加到0.1558。还对模块的全年性能进行了调查,发现在炎热月份由于气候影响而损失了约28%的冷却能,而在寒冷月份则达到了17.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号