...
首页> 外文期刊>Solar Energy >CFD analysis of solar tower Hybrid Pressurized Air Receiver (HPAR) using a dual-banded radiation model
【24h】

CFD analysis of solar tower Hybrid Pressurized Air Receiver (HPAR) using a dual-banded radiation model

机译:使用双频辐射模型对太阳能塔混合增压空气接收器(HPAR)进行CFD分析

获取原文
获取原文并翻译 | 示例
           

摘要

Solar receivers used for central tower Concentrated Solar Power (CSP) plants use either a surface-based or volumetric heat transfer region. Volumetric receivers are more efficient but require more sophisticated and expensive materials that can withstand the elevated temperatures (in excess of 1000 degrees C). For a solarized gas-turbine application, pressurized air from the compressor is used as heat transfer fluid (HTF) in order to increase both the density and heat capacity of the HTF. If a volumetric receiver is used, it needs to be located in a pressure vessel with a pressurized quartz window located at the aperture of the concentrator. An alternative approach to utilize pressurized air in a pseudo-volumetric fashion is to populate a volumetric region with piped pressurized air. A tubular-type volumetric receiver (named a Hybrid Pressurized Air Receiver (HPAR)) is studied here. The HPAR provides the challenge of enabling maximum heat transfer without causing hot spots on the side of the solar irradiation source. Heat transfer in the HPAR would not be as effective as for a true volumetric receiver because the heat transfer area is limited by the tube wall. The heat transfer to the HTF is however enhanced through mixing generated by external forced convection caused by suction due to a downstream fan in the receiver cavity. In addition, the aperture of the cavity contains a glass windowed louver system, to limit re-radiation losses. A Computational Fluid Dynamics (CFD) model is generated of the solar receiver cavity. The commercial CFD code ANSYS Fluent v14.5 is used to evaluate the heat transfer between the incoming solar flux and the HTF. A numerical validation is performed to illustrate mesh dependency and the choice of turbulence model. The incoming solar irradiation and its absorption, reflection and transmission are modeled using the Discrete Ordinates (DO) radiation model in ANSYS Fluent. An idealized and a solar flux map based on the PS10 field are used as source. For comparison, both a gray (without a glass louver) and a semi-gray two-banded DO approach are used when modeling the absorption of high-wavelength re-radiation by the glass in front of the aperture. This two-banded approach is also applied to investigate the influence of a band-selective absorber tube and cavity surfaces. The DO model also predicts the emission of thermal re-radiation from all surfaces. The geometry is parameterized in order to allow for various cavity layouts to be automatically generated. Results include typical CFD results of a candidate geometry to illustrate the solar irradiation input, the effect of tubular layout as well as temperature and heat flux distributions for single and dual-band radiation. (C) 2014 Elsevier Ltd. All rights reserved.
机译:用于中央塔式集中太阳能发电(CSP)厂的太阳能接收器使用基于地面的传热区域或基于体积的传热区域。容积式接收器效率更高,但需要能够经受高温(超过1000摄氏度)的更复杂,更昂贵的材料。对于太阳能燃气轮机应用,来自压缩机的压缩空气用作传热流体(HTF),以同时提高HTF的密度和热容量。如果使用容积式接收器,则需要将其放置在压力容器中,且压力石英窗位于浓缩器的孔口。以拟体积方式利用压缩空气的另一种方法是用管道压缩空气填充体积区域。此处研究了管状容积式接收器(称为混合增压空气接收器(HPAR))。 HPAR面临的挑战是实现最大的热传递,而又不会在太阳辐射源的侧面引起热点。 HPAR中的传热将不如真正的容积式接收器有效,因为传热面积受到管壁的限制。然而,由于接收器腔体中的下游风扇引起的吸力导致的外部强制对流所产生的混合,增强了向HTF的热传递。另外,空腔的孔包含玻璃百叶窗系统,以限制再辐射损失。太阳接收器腔体生成了计算流体动力学(CFD)模型。商业CFD代码ANSYS Fluent v14.5用于评估传入的太阳通量和HTF之间的热传递。进行了数值验证,以说明网格依赖性和湍流模型的选择。使用ANSYS Fluent中的离散纵坐标(DO)辐射模型对入射的太阳辐射及其吸收,反射和透射进行建模。基于PS10场的理想化和太阳通量图被用作源。为了进行比较,在对光圈前面的玻璃对高波长再辐射的吸收进行建模时,可以同时使用灰色(无玻璃百叶窗)和半灰色两波段DO方法。这种两带方法也被用于研究带选择吸收器管和腔体表面的影响。 DO模型还可以预测所有表面的热辐射排放。参数化了几何形状,以允许自动生成各种空腔布局。结果包括候选几何体的典型CFD结果,以说明太阳辐射输入,管状布局的影响以及单波段和双波段辐射的温度和热通量分布。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Solar Energy》 |2014年第12期|338-355|共18页
  • 作者单位

    Univ Pretoria, Dept Mech & Aeronaut Engn, Thermeow Res Grp, Solar UP, ZA-0002 Pretoria, South Africa;

    Univ Stellenbosch, Solar Thermal Energy Res Grp, ZA-7602 Stellenbosch, South Africa;

    Univ Stellenbosch, Solar Thermal Energy Res Grp, ZA-7602 Stellenbosch, South Africa;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cavity receiver; CFD; Hybrid Pressurized Air Receiver; Radiation modeling;

    机译:空腔接收器;CFD;混合增压空气接收器;辐射建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号