首页> 外文期刊>Solar Energy >Uncovering the charge transfer and recombination mechanism in ZnS-coated PbS quantum dot sensitized solar cells
【24h】

Uncovering the charge transfer and recombination mechanism in ZnS-coated PbS quantum dot sensitized solar cells

机译:揭示ZnS包覆的PbS量子点敏化太阳能电池中的电荷转移和复合机理

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, the charge transfer and recombination mechanism is uncovered for the PbS/ZnS quantum dot sensitized solar cells (QDSSCs) based on nanoporous TiO2 electrodes. PbS quantum dots (QDs) were in-situ grown on TiO2 nanoparticles through the successive ionic absorption and reaction (SILAR) method, followed by the surface passivation of ZnS for the sensitized electrodes. It was observed that the ZnS coating cycles play a significant role in determining the photovoltaic parameters. The highest power conversion efficiency of 1.4% was achieved by coating 13 cycles of ZnS on TiO2/PbS electrode. It is essential to understand why and how ZnS passivation layers improve the photovoltaic performance of PbS QDSSCs. All obtained solar cells were characterized thoroughly by optical and electrical techniques. The open-circuit voltage decay technique and electrochemical impedance measurements indicated that the ZnS passivation layers significantly suppressed the charge recombination at the TiO2/electrolyte and TiO2/QD interfaces. The transient grating measurements suggested that the electron injection from PbS QDs to TiO2 was obviously enhanced by the ZnS coating layers. This could be attributed to the reduction of carrier trapping and recombination in PbS QDs after surface passivation. These beneficial effects of ZnS layers, therefore, resulted in the improved photovoltaic performances of PbS QDSSCs. This work provides better understanding on the passivation effect of ZnS layers in PbS QDSSCs, which would be beneficial for the further improvement of QDSSCs. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在这项工作中,发现了基于纳米多孔TiO2电极的PbS / ZnS量子点敏化太阳能电池(QDSSC)的电荷转移和复合机理。通过连续离子吸收和反应(SILAR)方法,在TiO2纳米颗粒上原位生长PbS量子点(QDs),然后对敏化电极进行ZnS表面钝化。观察到ZnS涂覆循环在确定光伏参数中起重要作用。通过在TiO2 / PbS电极上涂覆13个循环的ZnS,可以实现1.4%的最高功率转换效率。了解ZnS钝化层为何以及如何改善PbS QDSSCs的光伏性能至关重要。通过光学和电气技术对所有获得的太阳能电池进行了彻底的表征。开路电压衰减技术和电化学阻抗测量表明,ZnS钝化层显着抑制了TiO2 /电解质和TiO2 / QD界面处的电荷复合。瞬态光栅测量表明,ZnS涂层明显增强了PbS量子点向TiO2的电子注入。这可能归因于表面钝化后PbS QD中载流子的俘获和重组减少。因此,ZnS层的这些有益作用导致PbS QDSSC的光伏性能得到改善。这项工作可以更好地了解ZnS层在PbS QDSSC中的钝化效果,这将有助于进一步改善QDSSC。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Solar Energy》 |2015年第12期|307-313|共7页
  • 作者单位

    Univ Electrocommun, Fac Informat & Engn, Dept Engn Sci, Tokyo 1828585, Japan|Japan Sci & Technol Agcy JST, CREST, Saitama 3320012, Japan;

    Univ Electrocommun, Fac Informat & Engn, Dept Engn Sci, Tokyo 1828585, Japan;

    Univ Electrocommun, Fac Informat & Engn, Dept Engn Sci, Tokyo 1828585, Japan;

    Univ Electrocommun, Fac Informat & Engn, Dept Engn Sci, Tokyo 1828585, Japan|Chuo Univ, Dept Appl Chem, Tokyo 1128551, Japan;

    Univ Electrocommun, Fac Informat & Engn, Dept Engn Sci, Tokyo 1828585, Japan|Japan Sci & Technol Agcy JST, CREST, Saitama 3320012, Japan;

    Chuo Univ, Dept Appl Chem, Tokyo 1128551, Japan;

    Kyushu Inst Technol, Fac Life Sci & Syst Engn, Fuku Oka 8080196, Japan|Japan Sci & Technol Agcy JST, CREST, Saitama 3320012, Japan;

    Univ Electrocommun, Fac Informat & Engn, Dept Engn Sci, Tokyo 1828585, Japan|Japan Sci & Technol Agcy JST, CREST, Saitama 3320012, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Quantum dot sensitized solar cells; Charge transfer; Recombination; Transient grating;

    机译:量子点敏化太阳能电池;电荷转移;重组;瞬态光栅;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号