首页> 外文期刊>Solar Energy >Assimilating observations to simulate marine layer stratocumulus for solar forecasting
【24h】

Assimilating observations to simulate marine layer stratocumulus for solar forecasting

机译:吸收观测值以模拟海洋层地层积云进行太阳预报

获取原文
获取原文并翻译 | 示例
       

摘要

Integration of solar energy forecasts into the electric network is becoming essential because of the continually increasing penetration level of solar energy. Three-dimensional numerical weather prediction (NWP) models predict the weather based on the current weather conditions (called initialization) and simulate the ensuing atmospheric processes. The accuracy of forecasts therefore depends, in part, on the accuracy of the model initializations. Data assimilation is recognized as the most widely used technique to improve the initialization into NWP models. In this study, meteorological observations from the surface and upper-air in-situ networks over the southern California coast are assimilated into the advanced research version of the Weather Research and Forecasting (WRF) model using a three dimensional variational data assimilation technique (3DVAR). A single observation test was conducted to tune-up the length scale and variance scale along with the regional domain dependent background error statistics. A customized version of 3DVAR data assimilation was deployed with two sets of cyclic data assimilation with 6-h and 1-h assimilation windows along with the cold-start mode. The cyclic data assimilation experiments consistently outperformed the cold-start data assimilation and WRF for intra-day Global Horizontal Irradiance (GHI) and Clear Sky Index (CSI) forecast. Hourly cyclic assimilation showed the highest forecast skill score against ground measurements and satellite measurements. Even at the coastal stations with more challenging meteorological conditions, the hourly cyclic assimilation consistently outperformed the 24-h persistence forecast. The average (mean of four case studies) hourly cyclic data assimilation showed the highest forecast skill score in GHI and CSI intra-day forecast with reference to 24-h persistence forecast up to 39.4% and 40.7% respectively at the coastal stations. The spatial distributions of GHI biases estimated against SolarAnywhere satellite measurements showed that the hourly cyclic assimilation consistently improved the stratocumulus cloud coverage, thickness, and life time over the coastal region, but biases are still present further inland.
机译:由于太阳能的渗透水平不断提高,将太阳能预测集成到电网中变得至关重要。三维数值天气预报(NWP)模型基于当前天气状况(称为初始化)来预测天气并模拟随后的大气过程。因此,预测的准确性部分取决于模型初始化的准确性。数据同化被认为是改善NWP模型初始化的最广泛使用的技术。在这项研究中,使用三维变分数据同化技术(3DVAR)将来自加利福尼亚南部海岸的地表和高空原位网络的气象观测同化为“天气研究与预报(WRF)”模型的高级研究版本。 。进行了一次观察测试,以调整长度尺度和方差尺度以及与区域域相关的背景误差统计信息。部署了定制版本的3DVAR数据同化,其中包括两组循环数据同化以及6小时和1小时同化窗口以及冷启动模式。对于日内全球水平辐照度(GHI)和晴空指数(CSI)预测,循环数据同化实验始终优于冷启动数据同化和WRF。每小时周期性同化相对于地面测量和卫星测量显示最高的预测技能得分。即使在气象条件更具挑战性的沿海站点,每小时的循环同化性能也始终优于24小时持续性预报。每小时平均数据同化(四个案例研究的平均值)显示,相对于沿海站点的24小时持续性预报,GHI和CSI日内预报中的预报技能得分最高,分别达到39.4%和40.7%。根据SolarAnywhere卫星测量结果估计的GHI偏差的空间分布表明,每小时的循环同化作用持续改善了沿海地区的层积云覆盖范围,厚度和寿命,但在内陆地区仍存在偏差。

著录项

  • 来源
    《Solar Energy》 |2018年第3期|454-471|共18页
  • 作者单位

    Univ Calif San Diego, Ctr Renewable Resource Integrat, Ctr Energy Res, 9500 Gilman Dr, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Ctr Renewable Resource Integrat, Ctr Energy Res, 9500 Gilman Dr, La Jolla, CA 92093 USA;

    Univ Calif San Diego, Ctr Renewable Resource Integrat, Ctr Energy Res, 9500 Gilman Dr, La Jolla, CA 92093 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solar energy forecasting; Marine layer stratocumulus cloud; NWP; Intra-day forecast; Data assimilation;

    机译:太阳能预报海洋层平积云NWP日内预报数据同化;
  • 入库时间 2022-08-18 00:22:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号