首页> 外文期刊>Solar Energy >ZnS nanospheres/reduced graphene oxide photoanode for highly efficient solar water oxidation
【24h】

ZnS nanospheres/reduced graphene oxide photoanode for highly efficient solar water oxidation

机译:ZnS纳米球/氧化石墨烯还原阳极,用于高效太阳能氧化

获取原文
获取原文并翻译 | 示例
       

摘要

One of the most important challenges in renewable energy conversion is construction of an earth-abundant, active, and stable water splitting photoelectrocatalyst operating at all pH values. In this work, ZnS nanoparticles (NPs) were embedded on different amounts of reduced graphene oxide (RGO) nanosheets with the help of ultrasonic waves. The role of the RGO-ZnS nanocomposites as an efficient photoanode for oxygen evolution reaction was evaluated. The RGO-ZnS nanocomposite with 10% RGO (RGO10-ZnS) exhibits outstanding photoelectrocatalytic activity compared with ZnS, RGO, and other prepared nanocomposites. It shows a negative onset potential of -200 mV with a maximum photocurrent density of 1.1 mA cm(-2) at 1.23 V (vs RHE) in Na2SO4 (0.5 M) solution which is five times higher than that of ZnS NPs. The solar-simulated light power is saved 1 V from the external power source or produced power of 0.9 mW cm(-2). RG010-ZnS showed -400 mV increase in the photovoltage than that of ZnS nanoparticles. The excellent conductivity and high surface area of RGO provide an outstanding ability to the nanocomposite to harvest and localize the light near ZnS NPs through its plasmonic structure which causes a negative shift in the onset potential compared with both ZnS and RGO. In other words, RGO has the ability to trap light in modes so-called surface plasmons. The light surface plasmon resonances can efficiently enhance the optical absorption at resonant frequency to slow down the photons.
机译:可再生能源转换中最重要的挑战之一是构建在所有pH值下均可工作的富含地球,活跃且稳定的水分解光电催化剂。在这项工作中,借助于超声波将ZnS纳米颗粒(NPs)嵌入到不同数量的还原型氧化石墨烯(RGO)纳米片上。评估了RGO-ZnS纳米复合材料作为有效的光阳极进行放氧反应的作用。与ZnS,RGO和其他制备的纳米复合材料相比,含10%RGO的RGO-ZnS纳米复合材料(RGO10-ZnS)具有出色的光电催化活性。在Na2SO4(0.5 M)溶液中,它在1.23 V(vs RHE)下显示负起始电位为-200 mV,最大光电流密度为1.1 mA cm(-2),是ZnS NPs的五倍。太阳能模拟的光功率从外部电源节省了1 V,或者产生了0.9 mW cm(-2)的功率。 RG010-ZnS的光电压比ZnS纳米粒子的光电压增加-400 mV。 RGO的出色电导率和高表面积为纳米复合材料提供了出色的能力,使其能够通过其等离子体结构在ZnS NPs附近收集和定位光,这与ZnS和RGO相比,引起了起始电位的负移。换句话说,RGO能够以所谓的表面等离激元模式捕获光。光表面等离子体激元共振可以有效地增强共振频率下的光吸收,从而减慢光子的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号